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Abstract 
 

In this report the implementation of an adaptive mesh refinement scheme into an 
existing three-dimensional Eulerian hydrocode is described.  The adaptive strategy is 
block-based, which was required in order to leave the existing data structure intact.  The 
focus of this work is on the development of refinement and derefinement procedures that 
are conservative and preserve the locations of material interfaces, as well as error 
indicators suitable for use in an Eulerian hydrocode. 

 
Introduction 
 

Adaptive mesh refinement refers to a scheme for finite difference and finite 
element codes wherein the size and distribution of the computational mesh is changed 
dynamically so that the solution complies with some specific constraint.  There are many 
different types of constraints of interest, depending on the goals of the computation, but a 
common constraint is that the error be held constant over the entire computational mesh.  
There are many advantages to adaptive refinement schemes; most importantly is that 
problems are solved in the most computational time- and memory-efficient manner. 
 

The benefits of adaptive mesh refinement have already been demonstrated in 
many application areas (for example, linear elasticity, gas dynamics, and acoustics), but 
adaptive refinement for shock wave physics codes is still a new area of research.  
Eulerian codes in particular may benefit significantly from adaptive mesh refinement 
since, typically, it is necessary to include a large number of elements in a simulation, 
even in regions where initially there may not be any material. 

 
In this report, the implementation of an adaptive mesh refinement scheme into an 

existing three-dimensional Eulerian hydrocode is described.  The code can be 
characterized for present purposes as being based on a discretization of the field 
equations for a media with multiple materials and material interfaces, approximated on a 
Cartesian grid, a structure typified by the well-known CTH code [1].  The adaptive 
strategy is block-based, which was required in order to leave the existing data structure 
intact.  The focus of this work is on error indicators suitable for use in an Eulerian 
hydrocode, as well as refinement and derefinement procedures. 
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Overview of Adaptive Strategy 
 
 When implementing adaptive refinement into an existing code, it is very 
important to consider the organization and data structure of the target application code.  
In the present case, the data is organized in (I,J,K) logical blocks that correspond to the 
mesh used in the problem, as is shown in Figure 1.  Within a block, the mesh contour 
lines must remain parallel to the coordinate axes and constrained nodes are not permitted.  
However, different values of I, J, and/or K are permitted in adjacent blocks.  Thus a 
reasonable approach for implementation of adaptivity, which preserved the existing data 
structure in the code, was to limit refinement to the block level.  Furthermore, in order to 
simplify the refinement process as well as communication between blocks, the 
refinement/derefinement was limited to isotropic 2:1 ratios along adjacent blocks.  This is 
illustrated in Figure 2, where a set of communicating blocks is shown.  Ghost cells are 
incorporated along the edges of the block, and the contents of these cells combine or split 
as is needed from the adjacent block.  In this way, each block sees exactly the 
information it expects to see. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.  Organization of data in target application code 
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Figure 2.  Block-adaptive strategy applied to target application code. 
 
 A significant part of this effort is to establish the two-way communication 
between blocks, as well as to make the scheme work in parallel, which is the subject of 
another paper [2].  The focus of this work is on the development of refinement and 
derefinement schemes, as well as error indicators, suitable for implementation into a 
three-dimensional Eulerian shock physics code.  
 
Refinement and Derefinement 
 

Efficient and accurate schemes for refinement and derefinement of the cell 
variables are a crucial element in any adaptive scheme. The refinement and derefinement 
strategies used here take advantage of the 1:2 and 2:1 ratios between parent and child 
cells, allowing these processes to be carried out rapidly and in a conservative manner. 
 

Derefinement Procedure 
 

The collapse of a set of eight child cells into a single parent cell is a simple 
process.  A method for this was implemented by Crawford [2] and this scheme was used 
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in the present investigation.  The scheme conserves mass and energy; momentum is also 
conserved if the velocity profiles are linear across the parent cell. 
 
The parent cell material masses are found from the sum of the child cell material masses,  
i.e. 

 
where Mmp and Mmi denote masses of material m in the parent and ith child cells, 
respectively.  The parent cell total mass is the sum of the parent material masses.  Values 
for the intensive cell material energies for the parent are determined by taking a mass 
average of the value for the children as 

 
where Emp and Emi denote energies for material m in the parent and ith child cells, 
respectively.  The parent cell total energy is then calculated as  
 

 
where Mp is the total mass of the parent cell, Emp is the intensive cell energy for material 
m and Etp is the intensive total cell energy for the parent cell.  Currently, values for other 
intensive variables that are not material intensive variables (such as internal state 
variables) in the parent are taken from child cell 1 (refer to Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Orientation of child cells in the parent cell. 
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Material and cell pressures, temperatures, stress deviators, and artificial 
viscosities for the parent cell are also taken for child cell 1.  Clearly this is not uniformly 
valid and will be modified at a later date.  For example, material and cell pressures could 
be determined from the equation-of-state and mixed-cell thermodynamics models once 
the material masses and energies have been determined for the children. 
 

The velocities in the application code are face-centered rather than cell-centered.  
The velocities along the face of the parents are taken as the average of the four faces of 
the children that share that face.  For example, the x-velocity on the left face of the parent 
cell shown in Figure 3 is the average x-velocities from child cells 1, 3, 5 and 7.  This 
process conserves momentum if the velocities vary linearly across the parent cell, but in 
general momentum conservation is not guaranteed. 
 

Refinement Procedure 
 

The refinement of a parent cell into eight child cells, on the other hand, is 
complicated by the fact that there may be material interfaces in the parent cell.  The 
interfaces must reconstructed to properly map the cell variables to the children.  There are 
already algorithms in place in the target application code that perform rezoning that could 
have been used for this; however, these algorithms rely in one-dimensional advection and 
may be too dispersive given the large number of times the refinement routines are used 
during a typical calculation.  Instead, we can take advantage of the exact geometric 
overlaps that exist when the refinement is limited to 2 to 1 ratios, and reconstruct the 
material interfaces in the child cells exactly.  This eliminates dispersion errors. 
 

Review of Youngs’ Method for Interface Reconstruction 
 

A key element in the refinement process is the proper mapping of material 
interfaces when elements are refined.  In order to understand this process, it is useful to 
review Youngs’ algorithm for interface reconstruction [3].  The method is a systematic 
approach for the determination of a unique planar interface separating two materials in a 
cell, given the volume fractions of the materials in the cell.  Conceptually, the method is 
simple to understand.  Where it provides the greatest benefit is by minimizing the number 
of possible intersection conditions that must be checked when a plane of arbitrary 
orientation passes through a cell (there are only five when this method is applied). 

 
The basic strategy in the Youngs’ algorithm is to determine the outward unit 

normal vector n separating the material of interest from the other materials, and the 
distance d from the interface plane to a reference corner, measured along a direction 
parallel to n.  If there are only two materials in the cell and the interface plane is assumed 
to be planar, these two quantities uniquely define the location of the interface plane.  
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Figure 4.  Schematic of a central cell (Cell 14) and its 26 surrounding cells. 
 
 

The first step in the method is to determine the direction of n.  This is done by 
normalizing the direction for the maximum rate of change of the volume fraction, i.e. 

 

 
where φ is the volume fraction of the material of interest.  Difference approximations are 
used to determine the gradient of the volume fraction.  Since the direction of the normal 
must be independent of the coordinate system selected, a symmetric difference 
approximation must be used.  Consider a cell and its 26 neighboring cells as is depicted 
in Figure 4.  A symmetric difference approximation for ∂φ=/=∂x in cell 14 can be 
expressed as  
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where φe and φw are determined as 
 

 

 
and ∆ξ and ∆ζ are dimensionless cell dimensions defined as 
 

 
The approximation for φe, given in Eq. (6), is formed from unit cell linear interpolation of 
values for the total material volume (that is, the cell volume multiplied by the volume 
fraction) for each of the edges of cell 15 parallel to the x-axis, evaluated at the center of 
cell 15.  Likewise, values for the total material volume at each of these edges is 
determined from unit cell linear interpolation for each of the cells sharing that edge (for 
example, one of these edges is formed from cells 3, 6, 12, and 15).  An equivalent 
approximation is used to determine φw given in Eq. (7).  Similar symmetric difference 
expressions can be also defined for the other two derivatives ∂φ=/=∂y and ∂φ=/=∂z. 
 
 Once the unit normal vector has been defined, the interface plane can be located 
and the value for d can be found.  In order to minimize the number of possible 
intersections that must be considered, it is useful to apply some restrictions to the 
calculation.  First, all calculations are made with respect to a unit cube.  Second, the 
interface determination is limited to volume fractions less than ½.  If the volume fraction 
is greater than ½, then the interface is located based on the values of 1 - φ (i.e. the volume 
fraction for the other material) for the cell of interest and its 26 neighboring cells.  Third, 
the interface determination is made with respect to a specific corner of the unit cube, and 
at a specific orientation.  The corner and orientation are determined as follows.  The 
absolute values of the components of n are ordered from smallest to largest.  Let these 
values be designated at n1, n2 and n3.  Then, the interface determination is made in the 1-
2-3 coordinate system having directions corresponding to the directions of n1, n2 and n3.  
A series of axis sign changes (i.e. –x for x, -y for y, etc.) and/or axis swaps (i.e. x for y, z 
for x, etc.) will also transform the x-y-z coordinate system to the 1-2-3 coordinate system. 
 

After applying these three restrictions, only one of five possible intersection 
conditions is possible.  These are given in Figure 5, and include the triangle section,  
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Figure 5.  Possible intersection conditions for a plane intersecting a unit cube: (a) 
triangle section, (b) quadrilateral section A, (c) pentagonal section, (d) hexagonal 

section, and (e) quadrilateral section B. 
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quadrilateral section A, pentagonal section, hexagonal section, and the quadrilateral 
section B.  Depending on the relative values of n1, n2, n3 and φ, only one of these five 
intersection types can be produced.  From this comes the interface geometry as well as a 
value for d.  The applicable ranges for each of the interface geometries and the 
corresponding values for d are as follows: 
 
Triangle section: this situation occurs for  

and gives 

Quadrilateral section A: this situation occurs for 

 
and gives 
 

Pentagonal section: this situation occurs for  
  

or 

 
and gives 

 
Hexagonal section: this situation occurs for 
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Quadrilateral section B: this situation occurs for  

 
and gives 

 
 
Note that in the case of the pentagonal and hexagonal sections, a cubic must be solved to 
determine d. 
 

Extension of Youngs’ Method for Cell Refinement 
 

Once d and n for the parent cell are known, refinement into eight equal volume 
child cells can be accomplished in a manner that preserves the interface reconstruction in 
the children.  The basic procedure is to compute d and n for each of the children, locate 
the position of the interface plane then determine the value for the volume fraction 
corresponding to this plane location.   

 
Consider the refinement of a parent cell into eight children, in the 1-2-3 

coordinate system, as is depicted in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Schematic of refinement of a parent cell into eight equal volume child 
cells. 
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Note that the values of di for the children are based values for a unit cell.  Now, given the 
value for d and n in each of the child cells, the interface can be reconstructed and the 
required volume fraction can be computed.  To do this, we need to apply some 
restrictions.  First, the reference corner orientation for each child cell is set equal to the 
orientation for the parent cell (unless it needs to be reversed – see the third restriction).  
Second, a check must be made to see if any of the child cells are completely full or 
empty.  For di < 0, the child cell is empty and the volume fraction is set to zero, and for di 
> n1 + n2 + n3, the child cell is completely full and the volume fraction is set to one.  No 
interface reconstruction is done in either of these situations.  Third, if di > n1, di > n2 and 
di > n3 or if di > n1, di > n2 and di > n1 + n2 then the reference corner is changed to the 
opposite one along the main diagonal and the volume fraction of the other material (i.e. 1 
- φ for the material of interest) is computed.  To do this, all that is required is the value of 
di be set to n1 + n2 + n3 – di. 
 
 After applying these restrictions, the number of possible intersections that must be 
considered is again reduced to the five possibilities given in Figure 5.  From these comes 
the value for φi for each of the children.  The applicable ranges for each of the interface 
geometries, as well as the corresponding values for φi, are as follows: 
 
Triangle intersection: this situation occurs for 
 

and gives: 

 
Quadrilateral section A: this situation occurs for  
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Pentagonal section: this situation occurs for 

and gives: 
 

 
 
Hexagonal section: this situation occurs for  

 
and gives  

 
Quadrilateral section B: this situation occurs for  
 

 
and gives 

 
Material Ordering 

 
An implicit assumption in the interface reconstruction is that there is only one 

interface separating two materials in a cell.  Reconstruction of multiple planar interfaces 
separating materials (for example, a crack tip) is not modeled using this reconstruction 
technique.  As such, when the method is extended for multi-material cells with n 
materials (including voids), it must be assumed that there are n – 1 interfaces.  Then, in 
order to properly locate the interfaces, the material ordering must be prescribed.  Youngs’ 
original work required that the user specify the material ordering. This was later extended 
by Bell [3] who implemented a scheme for automatic ordering.  However, Bell’s method 
requires the advection direction to be specified, and in the case of refinement there is no 
identifiable advection direction. 
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Using an idea similar in spirit to the one used by Bell, an automatic material 
ordering scheme is implemented into the cell refinement algorithm.  The ordering scheme 
outlined is applied to the parent cell in the refinement process.  Consider a cell with three 
materials as is shown in Figure 7. For the particular situation shown, it is clear that for the 
center cell the best choice for material ordering is 2-1-3.  An algorithm that embodies this 
decision process can be described as follows: 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 7.  Typical cell and surrounding cells with three materials. 

 
 
(1) Select a coordinate direction.  Evaluate  
 

 
for each material in the cell, using the symmetric difference approximations for φahead and 
φbehind as was presented in Eqs. (6) – (7) (i.e. φahead is φe and φbehind is φw for the x-
direction). 
 
(2) Evaluate  

 
(3) Repeat (1) and (2) for each of the coordinate directions.  The coordinate direction 

used for the final ordering is the one resulting in the largest value for ∆Φ. 
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(4) After the coordinate direction has been selected, the materials are placed into three 

categories, and the material ordering is based on the values for ∆φm for each of the 
materials in a category.  The categories are: 

a) Category 1:  Some of this material ahead, none behind 
b) Category 2:  Some of this material ahead and behind (or none ahead and 

behind) 
c) Category 3:  Some of this material behind, none ahead 

Category 1 materials are ordered first, based on their values of ∆φm, from largest to 
smallest, followed by Category 2 and 3 materials, which are ordered the same way. 

 
(5) Materials with equal values of ∆φm in any one category are ordered randomly. 
 
With regards to treatment of fragments (materials with none of a particular material 
ahead or behind), this procedure will naturally tend to collect fragments in the center of 
the parent cell.  This seems to be a desirable feature since the refinement process will 
naturally introduce cell boundaries across the fragments, making it possible to advect 
these materials without introducing ad-hoc advection velocities.  Numerical 
experimentation is needed to verify how well this scheme works for fragments. 
 

Refinement of Cell Variables 
 

Once the volume fractions have been properly mapped from the parent cell to the 
children, the cell variables can then be mapped.  The mapping employed here assures 
conservation of mass, momentum and internal energy between the parent and its children. 
 

Assuming equal densities in the parents and children, the cell masses for each 
material in the children are 

 
where Mm is the mass of material m, and the subscripts c and p denote child and parent, 
respectively.  Values for the intensive cell material energies for the children are inherited 
from the parent.  The intensive cell total energy is then calculated as 
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where Mc is the total mass of the child cell (i.e. the sum of the material masses), Emc is the 
intensive cell energy for material m and Etc is the intensive total cell energy for the child 
cell.  Values for other intensive variables in the children that are not material intensive 
variables (for example, internal state variables) are directly inherited from the parents.  
Currently, the material and cell pressures, temperatures, stress deviators, and artificial 
viscosities for the children are also directly inherited from the parent.  Clearly this is not 
an optimal scheme.  For example, material and cell pressures could be determined from 
the equation-of-state and mixed-cell thermodynamics models once the material masses 
and energies have been determined for the children.  These modifications will be 
performed at a later date. 
 

The velocities are face-centered instead of cell-centered and require special 
treatment to insure momentum conservation.  Here we need to determine the velocities of 
the faces in each of the three coordinate directions at the center of the parent cell.  
Consider the parent cell subdivided into the eight children shown in Figure 6.  The 
velocity in the 1-direction for the center face becomes: 
 

 
 
where Mp is the total mass of the parent cell, Mi the total mass of a child cell, V1l the 1-
velocity of the left face (i.e. the outside face shared by child cells 1, 3, 5 and 7), V1r the 1-
velocity of the right face (i.e. the outside face shared by child cells 2, 4, 6 and 8), and V1m 
the 1-velocity of the center face.  In a similar manner, the velocities of the center faces in 
the 2- and 3-directions are computed. 
 

Implementation 
 

FORTRAN routines were written to perform the refinement process described in 
the previous sections.  Using a simple driver program, the routines were all tested.  An 
example of the output from the testing is given in Figure 8.  Shown in Figure 8a are 
volume fractions for three materials in an 8x8 two-dimensional block.  In Figure 8b, the 
volume fractions for the refined cells corresponding to the lower left-hand quadrant of 
this block are shown.  Note that the volume fraction for Material 1 in refined cell (4,4) 
appears to be quite large.  This distortion is a correct result and is caused by the fact that 
the interface edges do not match up along cells adjacent to parent cell (2,2) (which is 
used to determine the volume fractions in child cell (4,4)).  Recall that the interface 
reconstruction method described requires that the interfaces be planar and does not 
require that the planes match up along the edges of adjacent cells. 
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Material 1 
 
8  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8 

Material 2 

8  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2  0.2500 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
         1                2              3                4             5               6                7              8 

Material 3 

8  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8 
 
 

Figure 8a.  Example of volume fractions for an 8x8 parent cell. 
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Material 1 
 
8  1.0000 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
7  1.0000 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
6  1.0000 1.0000 0.6154 0.0000 0.0000 0.0000 0.0000 0.0000
5  1.0000 1.0000 0.3846 0.0000 0.0000 0.0000 0.0000 0.0000
4  0.6154 0.3846 0.8284 0.0858 0.0000 0.0000 0.0000 0.0000
3  0.0000 0.0000 0.0858 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8 

Material 2 

8  0.0000 0.0000 0.0000 0.5000 1.0000 1.0000 1.0000 1.0000
7  0.0000 0.0000 0.0000 0.5000 1.0000 1.0000 1.0000 1.0000
6  0.0000 0.0000 0.0000 0.4667 1.0000 1.0000 1.0000 1.0000
5  0.0000 0.0000 0.0000 0.5333 1.0000 1.0000 1.0000 1.0000
4  0.0000 0.0000 0.0000 0.0858 1.0000 1.0000 1.0000 1.0000
3  0.4667 0.5333 0.0858 0.8284 1.0000 1.0000 1.0000 1.0000
2  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
          1                2              3                4             5               6                7              8 

Material 3 
 
8  0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
7  0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
6  0.0000 0.0000 0.3846 0.5333 0.0000 0.0000 0.0000 0.0000
5  0.0000 0.0000 0.6154 0.4667 0.0000 0.0000 0.0000 0.0000
4  0.3846 0.6154 0.1716 0.8284 0.0000 0.0000 0.0000 0.0000
3  0.5333 0.4667 0.8284 0.1716 0.0000 0.0000 0.0000 0.0000
2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8 

Figure 8b.  Computed volume fractions for the 8x8 child cells corresponding to the 
lower left-hand quadrant. 
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A listing of these routines is included in the appendix.  This includes amrzr.f (the 
top-level routine that does the refinement, modified from Crawford’s original version), 
vofsplit.f (the top-level routine that splits the volume fractions), morder.f (determines the 
material ordering), gradvof.f (determines the direction of the unit normal vectors), and 
partvof.f (partitions the volume fractions). 
 
Error Estimation 
 
 A key component of any adaptive scheme is the ability to estimate the error in the 
calculation accurately and efficiently.  Decisions are made regarding refinement and/or 
derefinement based on values computed for the error estimates. 
 
 There are numerous techniques that have been used successfully as indicators for 
the error in numerical solutions of differential equations.  A posteriori error estimation 
methods for differential equations have been under continual development for about the 
last two decades.  A summary of the current state-of-the-art in posteriori error estimation 
can be found in [4].  However, very few methods have been examined and tested for 
highly nonlinear equations, which exist in shock physics and large deformation 
applications.  Recently, several error indicators were implemented into the Lagrangian 
code EPIC [5] to test their ability in predicting the regions in a calculation where 
refinement should be performed [6].  Included in the tests were an RVS indicator (a 
feature indicator that evaluates a scalar velocity difference at the nodes), a flux jump 
indicator (a feature indicator that examines the magnitude of the stress jumps across 
inter-element boundaries), and a gradient recovery indicator [7].  A qualitative 
assessment was made and none of the error indicators was completely successful in 
predicting regions where refinement and/or derefinement should probably be performed.  
As a result, a study was performed to derive a new set of indicators tailored specifically 
to the differential equations solved in these applications. 
  
 The complexity of the governing equations, when coupled with the speed of time 
integration in the explicit calculation used for these applications, prohibits detailed 
estimates of the error in the solution.  However, residuals associated with each of the 
governing equations can be estimated very quickly, and do not represent a significant 
computational burden over and above the time integration itself.  Then, hopefully the 
residuals will provide meaningful information for use in driving an adaptive process.  
This is the approach considered here.  Furthermore, although the numerical integration 
procedure used in the target application code is based on finite volume, the formulation 
developed here for the residual estimates is based on finite element methods, using the 
solution provided by the code as a finite element approximation to the exact solution.  In 
this way we can build on the residual estimation procedures that have already been 
developed for the finite element method. 
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Preliminaries 
 
 We shall derive here a residual-based, explicit collection of a posteriori error 
estimators that will provide for independent control and adaptive meshing of functions 
related to the approximation error in the continuity, momentum and energy equations. 
 
 We begin by considering the flow domain Ω which is a bounded domain in ℜ 3.  
The primitive variables of interest are the mass density ρ, the velocity field v, and the 
internal energy e which are functions of the position x ∈∈∈∈ =Ω and time t ∈∈∈∈ =[0,∞).==Since it is 
known that the solutions of the governing conservation laws are not generally 
differentiable everywhere in Ω=x (0,T], it is necessary to consider weak forms of these 
equations.  For this purpose, we introduce the spaces P, V, and E of admissible densities, 
velocities and internal energy fields defined as that the following integral formulations 
are meaningful: 
 
 Find ρ ∈∈∈∈ =P, v=∈∈∈∈ =V, and e ∈∈∈∈ =E such that  

 
=

=

=

and 
 

 
Here Γρ,=Γv, and Γe are inflow boundaries through which prescribed mass, momentum 
and energy fluxes σρ, σσσσv, and σe are given; τ is the deviatoric Cauchy stress, a function of 
gradients of v and possibly the pressure p, which are specified by the appropriate 
constitutive equations and equations of state; and f is a specified body force per unit 
volume.  The spaces of admissible functions are then, for example, 
 

 
etc.  It is easily verified that if the solutions to Eqs. (25) – (27) exist and are sufficiently 
smooth, then they are also solutions to the classical differential conservation laws given 
in most discussions of Eulerian mechanics. 
 
  

( ) P∈∀=∇⋅−∂
Ω Γ

qdsqdqqt

ρ

ρσρρ ,xv (25) 

( )[ ] V∈∀⋅+⋅=−∇+⋅∇⋅+∂
Ω ΓΩ

vuxufxuuuvvv
v

,div: v dsddpt σσσστρ (26)

( ) ( )[ ]
ΓΩ

∈∀=∇⋅−⋅+∇⋅+∂
e

edsgdgpgee et E.στρ xvvv (27)

( ) ( ){ } ,\on0,0allfor: 1
ρρρ ΓΩ∂=>Ω∈∇⋅−∂== qtLqqxqq t vP (28)
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Next, we consider a family of partitions {Ph} of Ω into the elements Ωk, 
 

 
h being a mesh parameter; e.g. h =          hk, hk = dia (Ωk).  We approximate the functions 
in the spaces P, V, and E with piecewise polynomials so as to produce the finite 
dimensional subspaces  

 
In subsequent calculations, Ph consists of piecewise constants, Vh of piecewise linear 
functions, and Eh of piecewise constants.  We can now formulate the semi-discrete 
approximations of the weak forms of the conservation laws given in Eqs. (25) – (27).  For 
example, the semi-discrete approximation of (25) is: 
 
 Find ρh ∈∈∈∈  Ph such that 

 
Similar semi-discrete approximations of Eqs. (26) and (27) are constructed, but not stated 
for brevity. 
 
 Error Residual Relation 
 
 Let us focus on the continuity equation for clarity.  Similar results will follow 
immediately for the momentum and energy equations. 
 
 Let (ρ, v, e) (t) be the exact solutions of Eqs. (25) – (27) at time t and (ρh, vh, eh) 
(t) be the corresponding semi-discrete approximation.  Then the approximation errors at 
time t are the functions 

 
Returning to Eq. (25), we replace ρ=and v by ρh + ερ and vh + εεεεv, respectively, to obtain 
 

where Rρ is the total mass residual functional: 

.,, EEVVPP ⊂⊂⊂ hhh

( ) hP∈∀=∇⋅−∂
Ω Γ

hhhhhht qdsqdqq
ρ

ρσρρ .xvh (29)
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( )[ ] ( ) P∈∀=∇⋅++−∂
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Note that  

 
It is sometimes convenient to express Rρ as the sum of residual contributions from each 
element: 
 

  
where rρ=is the interior residual defined as 
 

 
and rbρ is the boundary residual defined as 
 

 
 
where [ρh] denotes the jump in ρh across inter-element boundaries.  Similar expressions 
for the total momentum and energy residual functionals, Rv(u) and Re(g), follow from this 
result.  For Rv(u) we have: 
 

 
where rv=is the interior residual defined as 
 

 
and rbv is the boundary residual defined as 

( ) ( )
Γ Ω

∇⋅−∂−=
ρ

ρρσ ρρ .xv dqqdsqqR hhht (32)

( ) h
hh qqR P∈∀= .0ρ (33)

( ) ,
1= Ω Ω∂

�
�
�

��

�
�
�

+=
N

k
b

k k

dsqrdxqrqR ρρρ (34)

( ) ( ) ( )( ) 0,,,,, ≥Ω∈⋅∇−−∂= ttttr khhht xxvxx ρρρ (35)

( ) ( ) ( ) ( ) 0,,
\on,,,

on0
, ≥Ω∈�

�

ΓΩ∂⋅
Γ

= t
ttt

tr k
khh

b x
]x[xvxn

x
ρ

ρ
ρ ρ

(36)

( ) ,
1

vvv
= Ω Ω∂

�
�
�

��

�
�
�

⋅+⋅=
N

k
b

k k

dsdR urxuru (37)

( ) ( ) 0,,,v ≥Ω∈+∇+⋅∇−⋅∇−∂−= tpt khhhth xfvvvxr τρ (38)



 22

 

 
Likewise, for Re(g) we have: 
 

 
where re=is the interior residual defined as 
 

 
and rbe is the boundary residual defined as 
 

 
Returning now to Eq. (31),  we denote the discrete convected mass flux error as the 
vector field 
 

 
Using this relation, we can write the total mass residual functional as 
 

 
 Error Analysis 
 
 To proceed further, we need additional notation and properties.  We denote Hs(Ω), 
s ≥≥≥≥====0,=as the Sobolev space of functions with generalized derivatives of order s in L2(Ω) 
(see [8]).  In particular, H1(Ω) is equipped with the norm 

 
 
and the semi-norm 
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Clearly, H0(Ω) = L2(Ω), and we denote 
 

 
Let Ωk ∈∈∈∈ =

==

=Ph (Ph being a partition of Ω).  It is known that if Ph belongs to a regular family 
of partitions, and Vh ∈∈∈∈ =

==

=Ph is a polynomial approximation of v ∈∈∈∈ =H1(Ωh) of order p, then 
 

 
where hk = dia (Ωk) and C is a constant independent of v and p.  In particular,  
 

 
and, on the boundary of Ωk, it can be shown that  
 

 
Returning to Eqs. (33) and (34), we observe that 
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where we have used the Cauchy-Schwarz inequality and (49) and (50), and C is a 
constant independent of ρ, v, hk and q.  Denoting ηρ,k as the local, explicit residual mass 
density error indicator for element Ωk, 
 

 
and again using the Cauchy-Schwarz inequality, we have 

 
Likewise, we can derive similar expressions for the local, explicit residual momentum 
and energy errors ηv,k and ηe,k given as 
 

 
 
and 
 

 
Application of the Cauchy-Schwarz inequality then yields 
 
 

and 

 
 
Returning again to the mass density error, we can use the result in Eq. (53) to write Eq. 
(44) as 
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 We next introduce the elliptic mass density error projection ϕρ=∈∈∈∈ =

==

=H1(Ω) defined 
as the unique function satisfying 
 

 
The left-hand side of Eq. (59) is recognized as the H1 inner product of ϕρ and q; thus 
 
 

 
 
and  
 
 

 
Likewise, for the momentum and energy equations we can define the elliptic momentum 
and energy error projections, ϕϕϕϕv and ϕe, as 
 

 
and  

 
respectively, to obtain the results 
 

 
 
and  
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Thus, we conclude that the error measures ηρ,k represent contributions for each element 
Ωk to a global bound on the H1 norm (the energy norm) of ϕρ, an elliptic smoothing of the 
mass flux error.  Similarly, the error measures ηv,k and ηe,k represent contributions to the 
global bounds on ϕϕϕϕv and ϕe, elliptic smoothings of the momentum and energy flux errors. 
 
 
One-Dimensional Simulations 
 

In order to test the validity of the residuals for use as error indicators, some one-
dimensional calculations of shock propagation were performed.  Shown in Figure 9 is a  
 
 
 
 
 
 
 
 
 
 

Figure 9.  Setup for one-dimensional shock propagation test problem. 
 
description of the problem.  An aluminum bar strikes a stationary aluminum bar at 2000 
m/s.  This causes shock waves to be propagated forward into the stationary bar and 
backward into the moving bar.  Figure 10 shows results from a one-dimensional 
Lagrangian simulation of the impact encounter.  Shown are calculated velocity profiles at 
various times after impact, along with the exact solution.   
 

Agreement between the solutions is good; albeit the numerical solution exhibits 
some ringing near the shock boundaries; a consequence of artificial viscosity.  Artificial 
viscosity is not used in the analytical solution. 
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Figure 10.  Velocity versus position at several times. 

 
Figure 11. 1/2hk

1/2||rbv|| versus position at several times. 
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Figure 12. hk||rv|| versus position at several times. 

 

Figure 13.  ηηηηv,k versus position at several times. 
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Norms of the residuals calculated from the solutions shown in Figure 10 are 
shown in Figures 11 – 13.  In Figure 11, the norm of the boundary residual from the 
momentum equation, multiplied by 1/2hk

1/2, is shown.  The boundary residual is largest at 
the shock interface.  Figure 12 shows the interior residual from the momentum equation 
multiplied by hk.  The interior residual is also large near the shock boundary, but is 
smaller in magnitude than the boundary residual.  The sum of these two residuals, which 
is the error indicator given in Eq. (54), is given in Figure 13.  Comparison of this result to 
the solutions shown in Figure 10 suggests that ηv,k is a probably suitable for driving an 
adaptive process. 

 
 

Two-Dimensional Simulations 
 

In the two-dimensional case it is usually not possible to derive an analytical 
solution for problems of practical significance.  Nevertheless, it is possible to make 
qualitative judgments about the performance of error indicators in identifying regions in 
the problem where the error in the solution is probably large (for example, across shock 
waves or in regions of large deformations). 

 
A two-dimensional Lagrangian simulation of a generic Taylor anvil impact was 

performed to test the utility of the residuals for use as an indication of the error.  Shown 
in Figure 14a is the problem setup.  The steel cylinder, 20 mm in diameter and 40 mm 
long, strikes a rigid boundary at x = 0 with an initial velocity of 1000 m/s.  The 
simulation was run assuming axial symmetry.  Interaction with the rigid boundary 
produces a mushroom-shaped cylinder at subsequent times after impact, which is 
illustrated in Figures 14b – 14d. 

Figure 14a.  Problem setup. 
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Figure 14b.  Pressure contours at 3.0 µµµµs. 

 
 

Figure 14c.  Pressure at 4.9 µµµµs. 
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Figure 14d.  Pressure at 6.7 µµµµs. 

 
Values for the boundary residual associated with the momentum equation, 

multiplied 1/2hk
1/2, are shown in Figures 15a-c.  Clearly, the boundary residuals are large 

across the shock wave propagating back towards the back of the cylinder.  However, the 
boundary residual is not large near the mushrooming head of the cylinder where the 
largest deformations are occurring.  This is probably also a region of large error, and is 
not identified by the boundary residual. 
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Figure 15a. 1/2hk

1/2||rbv|| at 3.0 µµµµs. 
 

 
Figure 15b. 1/2hk

1/2||rbv|| at 4.9 µµµµs. 
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Figure 15c. 1/2hk
1/2||rbv|| at 6.7 µµµµs. 

 
 
Corresponding values for the interior residual, multiplied by hk, are shown in 

Figures 16a-c.  As was the case for the boundary residuals, the interior residual is large 
across the shock wave.  However, the magnitudes of the interior residuals are smaller, 
similar to what was observed in the one-dimensional case.  Moreover, it is interesting to 
note that unlike the boundary residuals, the interior residual becomes large near the edge 
of the mushrooming head in the cylinder.  The sum of the boundary and interior 
residuals, which is the error indicator given in Eq. (54), is shown in Figures 17a-c.  The 
indicator appears to yield a reasonable representation of regions in this problem where 
adaptive meshes are probably needed: across the shock wave as well as in regions of 
large deformation.   
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Figure 16a. hk||rv|| at 3.0 µµµµs. 

 

 
 

Figure 16b. hk||rv|| at 4.9 µµµµs. 
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Figure 16c. hk||rv|| at 6.7 µµµµs. 

 
 

 
Figure 17a. ηηηηv,k at 3.0 µµµµs. 
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Figure 17b. ηηηηv,k at 4.9 µµµµs. 

 

 
 

Figure 17c. ηηηηv,k at 6.7 µµµµs. 
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Conclusions 
 
Algorithms necessary for implementation of adaptive mesh refinement into a 

three-dimensional Eulerian hydrocode have been described in this work.  An existing 
technique for interface reconstruction was extended to yield the proper volume fractions 
for mixed-material cells during refinement.  Preliminary results for error indicators are 
promising, but further enhancements and testing are still needed. 
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SUBROUTINE AMRZR(
C input

& KPLANE,IQQ,NSDD,IIQ,JJQ,
& I1,I2,J1,J2,

C input
& PRES,QX,QY,QZ,
& TEMP,XMAST,VVOID,DE,CE,XMASM,
& ENRGM,VMAT,VX,VY,VZ,SIJ,EXVAR,
& DVOLX,DVOLY,DVOLZ,DIV,
| VMATU,VMATL,VVOIDU,VVOIDL,VZU,

C
C scratch (dimensioned IMAX)

| NMP,
C scratch (dimensioned IMAX*(NUMMAT+1))

| IMP, MATORD, VOLSUM,
C scratch (dimensioned IMAX*3*NUMMAT)

| GNRM,
C scratch (dimensioned NUMMAT+1)

| PHIE, PHIW, PHIN, PHIS, PHIU, PHID,
| DPHI, ICAT1, ICAT2, ICAT3,

C scratch (dimensioned 8*(NUMMAT+1))
| VOLSUMS,

C scratch (dimensioned 8)
| PDISS, PDISRS, VOLS, IPOS,

C
C output

& PRSM,PRSP,QXM,QXP,QYM,QYP,QZM,QZP,TMPM,TMPP,XMSTM,XMSTP,
& VOIDM,VOIDP,DEM,DEP,CEM,CEP,XMSMM,XMSMP,XMEM,XMEP,XMVM,XMVP,
& VXM,VXP,VYM,VYP,VZMM,VZM,VZP,SIJM,SIJP,EXVM,EXVP,
& DVOLXM,DVOLXP,DVOLYM,DVOLYP,DVOLZM,DVOLZP,DIVM,DIVP)

C
C This routine splits a plane (PRES, QX, etc.) and places
C the results in planes M and P. This is primarily a placeholder
C routine using first-order techniques.
C
C Called by:
C Database manager: calling routine
C
C input
C kplane - plane number
C iqq - flag to indicate variables present
C nsdd - number of stress deviators
C iiq - flag to indicate location of results
C = 1 in I=1,IMAX/2
C = 2 in I=IMAX/2+1,IMAX
C jjq - flag to indicate location of results
C = 1 in J=1,JMAX/2
C = 2 in J=JMAX/2+1,JMAX
C i1,i2 - define the starting and stopping
C i indices for the conversion
C j1,j2 - define the starting and stopping
C j indices for the conversion
C input
C pres(imax,jmax,0:nummat) - cell pressure (material pressures)
C qx(imax,jmax) - x-artificial viscosity
C qy(imax,jmax) - y-artificial viscosity
C qz(imax,jmax) - z-artificial viscosity
C temp(imax,jmax,0:nummat) - cell temperature array
C xmast(imax,jmax) - total mass array
C vvoid(imax,jmax) - void volume fraction array
C vvoidu(imax,jmax,nummat) - void volume fraction array (kplane+1)
C vvoidl(imax,jmax,nummat) - void volume fraction array (kplane-1)
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C de(imax,jmax) - delta energy array
C ce(imax,jmax) - total energy array
C xmasm(imax,jmax,nummat) - material mass array
C enrgm(imax,jmax,nummat) - material energy array
C vmat(imax,jmax,nummat) - material volume fraction array
C vmatu(imax,jmax,nummat) - material volume fraction array (kplane+1)
C vmatl(imax,jmax,nummat) - material volume fraction array (kplane-1)
C vx(imax,jmax) - x velocity array
C vy(imax,jmax) - y velocity array
C vz(imax,jmax) - z velocity array
C sij(imax,jmax,nsdd) - stress deviator array
C exvar(imax,jmax,nnexv) - internal state variable array
C dvol(imax,jmax) - advection volume (remap step)
C div(imax,jmax) - change in volume (remap step)
C
C output
C prsm(imax,jmax,0:nummat) - pressure at z(kplane)
C prsp(imax,jmax,0:nummat) - pressure at z(kplane+1)
C qxm(imax,jmax) - x-artificial viscosity at z(kplane)
C qxp(imax,jmax) - x-artificial viscosity at z(kplane+1)
C qym(imax,jmax) - y-artificial viscosity at z(kplane)
C qyp(imax,jmax) - y-artificial viscosity at z(kplane+1)
C qzm(imax,jmax) - z-artificial viscosity at z(kplane)
C qzp(imax,jmax) - z-artificial viscosity at z(kplane+1)
C tmpm(imax,jmax,0:nummat) - temperature at z(kplane)
C tmpp(imax,jmax,0:nummat) - temperature at z(kplane+1)
C xmstm(imax,jmax) - total mass at z(kplane)
C xmstp(imax,jmax) - total mass at z(kplane+1)
C voidm(imax,jmax) - void volume fraction at z(kplane)
C voidp(imax,jmax) - void volume fraction at z(kplane+1)
C cem(imax,jmax) - total cell energy at z(kplane)
C cep(imax,jmax) - total cell energy at z(kplane+1)
C dem(imax,jmax) - delta cell energy at z(kplane)
C dep(imax,jmax) - delta cell energy at z(kplane+1)
C sijm(imax,jmax,nsdd) - stress deviators at z(kplane)
C sijp(imax,jmax,nsdd) - stress deviators at z(kplane+1)
C exvm(imax,jmax,nnexv) - internal state variables at z(kplane)
C exvp(imax,jmax,nnexv) - internal state variables at z(kplane+1)
C vxm(imax,jmax) - x velocity at z(kplane)
C vxp(imax,jmax) - x velocity at z(kplane+1)
C vym(imax,jmax) - y velocity at z(kplane)
C vyp(imax,jmax) - y velocity at z(kplane+1)
C vzmm(imax,jmax) - z velocity at z(kplane-1)
C vzm(imax,jmax) - z velocity at z(kplane)
C vzp(imax,jmax) - z velocity at z(kplane+1)
C xmsmm(imax,jmax,nummat) - material masses at z(kplane)
C xmsmp(imax,jmax,nummat) - material masses at z(kplane+1)
C xmvm(imax,jmax,nummat) - material volume fractions at z(kplane)
C xmvp(imax,jmax,nummat) - material volume fractions at z(kplane+1)
C xmem(imax,jmax,nummat) - material energies at z(kplane)
C xmep(imax,jmax,nummat) - material energies at z(kplane+1)
C dvolm(imax,jmax) - advection volume (remap step)
C dvolp(imax,jmax) - advection volume (remap step)
C divm(imax,jmax) - change in volume (remap step)
C divp(imax,jmax) - change in volume (remap step)
C
C Author: Dave Crawford
C Written: 01/27/99
C
#include "impdoubl.h"
#include "maxmat.h"
#include "comint.h"
#include "dbcsdm.h"
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#include "dbcdim.h"
#include "dbcxyz.h"
#include "dbcvol.h"
#include "ceunxv.h"
#include "tempdef.h"
#include "mpcthn.h"
#include "msgtyp.h"
#include "vofrnd.h"
C
C input arrays
C

DIMENSION PRES(IMAX,JMAX,0:NUMMAT),QX(IMAX,JMAX),QY(IMAX,JMAX),
& QZ(IMAX,JMAX),TEMP(IMAX,JMAX,0:NUMMAT),
& XMAST(IMAX,JMAX),VVOID(IMAX,JMAX),DE(IMAX,JMAX),
& CE(IMAX,JMAX),XMASM(IMAX,JMAX,NUMMAT),
& ENRGM(IMAX,JMAX,NUMMAT),VMAT(IMAX,JMAX,NUMMAT),
& VX(IMAX,JMAX),VY(IMAX,JMAX),VZ(IMAX,JMAX),
& SIJ(IMAX,JMAX,NSDD),EXVAR(IMAX,JMAX,NNEXV),DVOLX(IMAX,JMAX),
& DVOLY(IMAX,JMAX),DVOLZ(IMAX,JMAX),DIV(IMAX,JMAX)

C
DIMENSION VVOIDL(IMAX,JMAX),VVOIDU(IMAX,JMAX),

& VMATL(IMAX,JMAX,NUMMAT),VMATU(IMAX,JMAX,NUMMAT),
& VZU(IMAX,JMAX)

C
C output arrays
C

DIMENSION PRSM(IMAX,JMAX,0:NUMMAT),PRSP(IMAX,JMAX,0:NUMMAT),
& QXM(IMAX,JMAX),QXP(IMAX,JMAX),QYM(IMAX,JMAX),
& QYP(IMAX,JMAX),QZM(IMAX,JMAX),QZP(IMAX,JMAX),
& TMPM(IMAX,JMAX,0:NUMMAT),TMPP(IMAX,JMAX,0:NUMMAT),
& XMSTM(IMAX,JMAX),XMSTP(IMAX,JMAX),VOIDM(IMAX,JMAX),
& VOIDP(IMAX,JMAX),CEM(IMAX,JMAX),CEP(IMAX,JMAX),
& DEM(IMAX,JMAX),DEP(IMAX,JMAX),SIJM(IMAX,JMAX,NSDD),
& SIJP(IMAX,JMAX,NSDD),EXVM(IMAX,JMAX,NNEXV),
& EXVP(IMAX,JMAX,NNEXV),VXM(IMAX,JMAX),VXP(IMAX,JMAX),
& VZMM(IMAX,JMAX),VYM(IMAX,JMAX),
& VYP(IMAX,JMAX),VZM(IMAX,JMAX),VZP(IMAX,JMAX),
& XMSMM(IMAX,JMAX,NUMMAT),XMSMP(IMAX,JMAX,NUMMAT),
& XMVM(IMAX,JMAX,NUMMAT),XMVP(IMAX,JMAX,NUMMAT),
& XMEM(IMAX,JMAX,NUMMAT),XMEP(IMAX,JMAX,NUMMAT),
& DVOLXM(IMAX,JMAX),DVOLXP(IMAX,JMAX),
& DVOLYM(IMAX,JMAX),DVOLYP(IMAX,JMAX),
& DVOLZM(IMAX,JMAX),DVOLZP(IMAX,JMAX),
& DIVM(IMAX,JMAX),DIVP(IMAX,JMAX)

C
C scratch arrays
C

DIMENSION NMP(IMAX),IMP(IMAX,NUMMAT+1),MATORD(IMAX,NUMMAT+1),
| VOLSUM(IMAX,NUMMAT+1),GNRM(IMAX,3,NUMMAT),
| PHIE(NUMMAT+1),PHIW(NUMMAT+1),PHIN(NUMMAT+1),
| PHIS(NUMMAT+1),PHIU(NUMMAT+1),PHID(NUMMAT+1),
| DPHI(NUMMAT+1),ICAT1(NUMMAT+1),ICAT2(NUMMAT+1),
| ICAT3(NUMMAT+1),VOLSUMS(8,NUMMAT+1),
| PDISS(8),PDISRS(8),VOLS(8),IPOS(8)

C
PARAMETER (PZERO=0.0D0,PONE=1.0D0,PTWO=2.0D0,PSMAL=1.0D-14,

& PHALF=0.5D0,PQUART=0.25D0,PEIGHTH=0.125D0)
C

LOGICAL LTPCE,LMAT,LDE,LVEL,LSDEV,LVISC,LXTVAR,LVOL
C

DATA LTPCE/.FALSE./,LMAT/.FALSE./,LDE/.FALSE./,LVEL/.FALSE./,
& LSDEV/.FALSE./,LVISC/.FALSE./,LXTVAR/.FALSE./,LVOL/.FALSE./

C
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Update random numbers used by volume remapping routines
C

CALL CERNG(RANDX)
CALL CERNG(RANDY)
CALL CERNG(RANDZ)

C
C different sets of data are combined
C based on the value of iqq
C
CBC Set logicals for appropriate IQQ
C

LTPCE=.FALSE.
LVEL=.FALSE.
LSDEV=.FALSE.
LVISC=.FALSE.
LXTVAR=.FALSE.
LMAT=.FALSE.
LDE=.FALSE.

C LVOL is set when volume fractions are true volumes
C (starting when IQQ=4 and ending when IQQ=5)
C

IF (IQQ .EQ. 0) THEN
LTPCE=.TRUE.
LVEL=.TRUE.
LSDEV=.TRUE.
LXTVAR=.TRUE.
LMAT=.TRUE.
LDE=.TRUE.

ELSEIF (IQQ .EQ. 1) THEN
LTPCE=.TRUE.
LVEL=.TRUE.
LSDEV=.TRUE.
LVISC=.TRUE.
LXTVAR=.TRUE.
LMAT=.TRUE.
LDE=.TRUE.

ELSEIF (IQQ .EQ. 2) THEN
LVEL=.TRUE.

ELSEIF (IQQ .EQ. 3) THEN
LXTVAR=.TRUE.
LDE=.TRUE.

ELSEIF (IQQ .EQ. 4) THEN
LMAT=.TRUE.
LVOL=.TRUE.

ELSEIF (IQQ .EQ. 5) THEN
LVEL=.TRUE.
LMAT=.TRUE.
LVOL=.FALSE.

ELSEIF (IQQ .EQ. 6) THEN
LTPCE=.TRUE.
LMAT=.TRUE.

ENDIF
C
C
C--------------------------------------------------------------------
C
C We include boundary cells in the loops and provide them with
C our best estimates. In the loops, I0 and J0 always refer to
C the lower resolution mesh (physically larger cells) and II
C and JJ refer to the higher resolution mesh.
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JSTRT=MAX(J1,0)
JEND=MIN(J2,JMAX)
ISTRT=MAX(I1,0)
IEND=MIN(I2,IMAX)

IF (IIQ.EQ.1) THEN
IOFFS = 1

ELSE
IOFFS = IMAX/2

ENDIF

IF (JJQ.EQ.1) THEN
JOFFS = 1

ELSE
JOFFS = JMAX/2

ENDIF
C
C Cell volume arrays (VOLXP, VOLYP, VOLZP) should correspond to
C the volumes of the higher resolution mesh (the output arrays).

IF (IGM.LT.20) THEN

CALL BOMBED('1D block split not implemented')
C
C two-dimensional problem (only M planes count)

ELSEIF (IGM.GE.20 .AND. IGM.LT.30) THEN

DO 1000 JJ=JSTRT,JEND,2
J0 = JJ/2 + JOFFS
JM=MAX(JJ,1)
JP=MIN(JJ+1,JMAX)
DO 900 II=ISTRT,IEND,2
I0 = II/2 + IOFFS
IM=MAX(II,1)
IP=MIN(II+1,IMAX)

C split material values
C

IF (LMAT) THEN
C
C Materials processing....
C Perform no interface tracking

DO 12 N = 1,NUMMAT
IF (LVOL) THEN

F1 = VOLXP(IM)*VOLYP(JM)
F2 = VOLXP(IP)*VOLYP(JM)
F3 = VOLXP(IM)*VOLYP(JP)
F4 = VOLXP(IP)*VOLYP(JP)
FD = F1+F2+F3+F4
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
XMVM(IM,JM,N) = F1*VMAT(I0,J0,N)
XMVM(IP,JM,N) = F2*VMAT(I0,J0,N)
XMVM(IM,JP,N) = F3*VMAT(I0,J0,N)
XMVM(IP,JP,N) = F4*VMAT(I0,J0,N)

ELSE
XMVM(IM,JM,N) = VMAT(I0,J0,N)
XMVM(IP,JM,N) = VMAT(I0,J0,N)
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XMVM(IM,JP,N) = VMAT(I0,J0,N)
XMVM(IP,JP,N) = VMAT(I0,J0,N)

ENDIF
12 CONTINUE

C Advection volume (during remap)

IF (LVOL) THEN
F1 = VOLXP(IM)*VOLYP(JM)
F2 = VOLXP(IP)*VOLYP(JM)
F3 = VOLXP(IM)*VOLYP(JP)
F4 = VOLXP(IP)*VOLYP(JP)
FD = F1+F2+F3+F4
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
DVOLXM(IM,JM) = F1*DVOLX(I0,J0)
DVOLXM(IP,JM) = F2*DVOLX(I0,J0)
DVOLXM(IM,JP) = F3*DVOLX(I0,J0)
DVOLXM(IP,JP) = F4*DVOLX(I0,J0)
DVOLYM(IM,JM) = F1*DVOLY(I0,J0)
DVOLYM(IP,JM) = F2*DVOLY(I0,J0)
DVOLYM(IM,JP) = F3*DVOLY(I0,J0)
DVOLYM(IP,JP) = F4*DVOLY(I0,J0)
DIVM(IM,JM) = DIV(I0,J0)
DIVM(IP,JM) = DIV(I0,J0)
DIVM(IM,JP) = DIV(I0,J0)
DIVM(IP,JP) = DIV(I0,J0)

ENDIF

DO 15 N=1,NUMMAT

IF(MATMMP.NE.0) THEN
PRSM(IM,JM,N) = PRES(I0,J0,N)
PRSM(IP,JM,N) = PRES(I0,J0,N)
PRSM(IM,JP,N) = PRES(I0,J0,N)
PRSM(IP,JP,N) = PRES(I0,J0,N)
ENDIF
IF(MATTMP.NE.0) THEN
TMPM(IM,JM,N) = TEMP(I0,J0,N)
TMPM(IP,JM,N) = TEMP(I0,J0,N)
TMPM(IM,JP,N) = TEMP(I0,J0,N)
TMPM(IP,JP,N) = TEMP(I0,J0,N)
ENDIF

C Split mass conserving volume (same density)
IF (LVOL) THEN
F1 = XMVM(IM,JM,N)
F2 = XMVM(IP,JM,N)
F3 = XMVM(IM,JP,N)
F4 = XMVM(IP,JP,N)
ELSE
F1 = XMVM(IM,JM,N)*VOLXP(IM)*VOLYP(JM)
F2 = XMVM(IP,JM,N)*VOLXP(IP)*VOLYP(JM)
F3 = XMVM(IM,JP,N)*VOLXP(IM)*VOLYP(JP)
F4 = XMVM(IP,JP,N)*VOLXP(IP)*VOLYP(JP)
ENDIF
FD = F1+F2+F3+F4
IF (FD.GT.PZERO) THEN
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
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ENDIF
XMSMM(IM,JM,N) = F1*XMASM(I0,J0,N)
XMSMM(IP,JM,N) = F2*XMASM(I0,J0,N)
XMSMM(IM,JP,N) = F3*XMASM(I0,J0,N)
XMSMM(IP,JP,N) = F4*XMASM(I0,J0,N)
XMEM(IM,JM,N) = ENRGM(I0,J0,N)
XMEM(IP,JM,N) = ENRGM(I0,J0,N)
XMEM(IM,JP,N) = ENRGM(I0,J0,N)
XMEM(IP,JP,N) = ENRGM(I0,J0,N)

15 CONTINUE

C Total mass and void fraction

XMSTM(IM,JM) = XMSMM(IM,JM,1)
XMSTM(IP,JM) = XMSMM(IP,JM,1)
XMSTM(IM,JP) = XMSMM(IM,JP,1)
XMSTM(IP,JP) = XMSMM(IP,JP,1)
IF (LVOL) THEN
VOIDM(IM,JM)=VOLXP(IM)*VOLYP(JM)-XMVM(IM,JM,1)
VOIDM(IP,JM)=VOLXP(IP)*VOLYP(JM)-XMVM(IP,JM,1)
VOIDM(IM,JP)=VOLXP(IM)*VOLYP(JP)-XMVM(IM,JP,1)
VOIDM(IP,JP)=VOLXP(IP)*VOLYP(JP)-XMVM(IP,JP,1)
ELSE
VOIDM(IM,JM) = PONE-XMVM(IM,JM,1)
VOIDM(IP,JM) = PONE-XMVM(IP,JM,1)
VOIDM(IM,JP) = PONE-XMVM(IM,JP,1)
VOIDM(IP,JP) = PONE-XMVM(IP,JP,1)
ENDIF
DO 45 N=2,NUMMAT
XMSTM(IM,JM)=XMSTM(IM,JM)+XMSMM(IM,JM,N)
XMSTM(IP,JM)=XMSTM(IP,JM)+XMSMM(IP,JM,N)
XMSTM(IM,JP)=XMSTM(IM,JP)+XMSMM(IM,JP,N)
XMSTM(IP,JP)=XMSTM(IP,JP)+XMSMM(IP,JP,N)
VOIDM(IM,JM)=VOIDM(IM,JM)-XMVM(IM,JM,N)
VOIDM(IP,JM)=VOIDM(IP,JM)-XMVM(IP,JM,N)
VOIDM(IM,JP)=VOIDM(IM,JP)-XMVM(IM,JP,N)
VOIDM(IP,JP)=VOIDM(IP,JP)-XMVM(IP,JP,N)

45 CONTINUE
ENDIF

C
C split the pressures, artificial viscosities,
C temperatures,
C total energies, and delta energies
C

IF(LVISC) THEN

C For refinement, zero the artificial viscosities

QXM(IM,JM) = PZERO
QXM(IP,JM) = PZERO
QXM(IM,JP) = PZERO
QXM(IP,JP) = PZERO

QYM(IM,JM) = PZERO
QYM(IP,JM) = PZERO
QYM(IM,JP) = PZERO
QYM(IP,JP) = PZERO

ENDIF
C

IF (LTPCE) THEN
IF (LVOL) THEN
F1=PONE/VOLXP(IM)/VOLYP(JM)
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F2=PONE/VOLXP(IP)/VOLYP(JM)
F3=PONE/VOLXP(IM)/VOLYP(JP)
F4=PONE/VOLXP(IP)/VOLYP(JP)
ELSE
F1=PONE
F2=PONE
F3=PONE
F4=PONE
ENDIF

C The pressure variable is used to hold the
C advection volume in the remap step.

IF (.NOT.LVOL) THEN
PRSM(IM,JM,0) = F1*XMVM(IM,JM,1)*PRSM(IM,JM,1)
PRSM(IP,JM,0) = F2*XMVM(IP,JM,1)*PRSM(IP,JM,1)
PRSM(IM,JP,0) = F3*XMVM(IM,JP,1)*PRSM(IM,JP,1)
PRSM(IP,JP,0) = F4*XMVM(IP,JP,1)*PRSM(IP,JP,1)
ENDIF
TMPM(IM,JM,0) = F1*XMVM(IM,JM,1)*TMPM(IM,JM,1)
TMPM(IP,JM,0) = F2*XMVM(IP,JM,1)*TMPM(IP,JM,1)
TMPM(IM,JP,0) = F3*XMVM(IM,JP,1)*TMPM(IM,JP,1)
TMPM(IP,JP,0) = F4*XMVM(IP,JP,1)*TMPM(IP,JP,1)
DO 68 N=2,NUMMAT
IF (.NOT.LVOL) THEN
PRSM(IM,JM,0)=PRSM(IM,JM,0)

2 +F1*XMVM(IM,JM,N)*PRSM(IM,JM,N)
PRSM(IP,JM,0)=PRSM(IP,JM,0)

2 +F2*XMVM(IP,JM,N)*PRSM(IP,JM,N)
PRSM(IM,JP,0)=PRSM(IM,JP,0)

2 +F3*XMVM(IM,JP,N)*PRSM(IM,JP,N)
PRSM(IP,JP,0)=PRSM(IP,JP,0)

2 +F4*XMVM(IP,JP,N)*PRSM(IP,JP,N)
ENDIF
TMPM(IM,JM,0) = TMPM(IM,JM,0)

2 +F1*XMVM(IM,JM,N)*TMPM(IM,JM,N)
TMPM(IP,JM,0) = TMPM(IP,JM,0)

2 +F2*XMVM(IP,JM,N)*TMPM(IP,JM,N)
TMPM(IM,JP,0) = TMPM(IM,JP,0)

2 +F3*XMVM(IM,JP,N)*TMPM(IM,JP,N)
TMPM(IP,JP,0) = TMPM(IP,JP,0)

2 +F4*XMVM(IP,JP,N)*TMPM(IP,JP,N)
68 CONTINUE
C The total energy variable is used to hold
C advection volume in the remap step.

IF (.NOT.LVOL) THEN
F1 = VOLXP(IM)*VOLYP(JM)
F2 = VOLXP(IP)*VOLYP(JM)
F3 = VOLXP(IM)*VOLYP(JP)
F4 = VOLXP(IP)*VOLYP(JP)
FD = F1+F2+F3+F4
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
CEM(IM,JM) = F1*CE(I0,J0)
CEM(IP,JM) = F2*CE(I0,J0)
CEM(IM,JP) = F3*CE(I0,J0)
CEM(IP,JP) = F4*CE(I0,J0)
ENDIF

ENDIF

IF (LDE) THEN
F1 = VOLXP(IM)*VOLYP(JM)
F2 = VOLXP(IP)*VOLYP(JM)



 49

F3 = VOLXP(IM)*VOLYP(JP)
F4 = VOLXP(IP)*VOLYP(JP)
FD = F1+F2+F3+F4
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
DEM(IM,JM) = F1*DE(I0,J0)
DEM(IP,JM) = F2*DE(I0,J0)
DEM(IM,JP) = F3*DE(I0,J0)
DEM(IP,JP) = F4*DE(I0,J0)

ENDIF
C
C split the velocities
C

IF (LVEL) THEN
VXM(IM,JM) = VX(I0,J0)
VYM(IM,JM) = VY(I0,J0)
VXM(IP,JM) = VX(I0,J0)
VYM(IP,JM) = VY(I0,J0)
VXM(IM,JP) = VX(I0,J0)
VYM(IM,JP) = VY(I0,J0)
VXM(IP,JP) = VX(I0,J0)
VYM(IP,JP) = VY(I0,J0)

ENDIF
C
C if stress deviators are present,
C split them
C

IF ((LSDEV).AND.(NSDD.GT.1)) THEN
DO 110 NSD=1,NSDD

SIJM(IM,JM,NSD) = SIJ(I0,J0,NSD)
SIJM(IP,JM,NSD) = SIJ(I0,J0,NSD)
SIJM(IM,JP,NSD) = SIJ(I0,J0,NSD)
SIJM(IP,JP,NSD) = SIJ(I0,J0,NSD)

110 CONTINUE
ENDIF

C
C if internal state variables are present,
C split them
C

IF ((LXTVAR).AND.(NAEXV.GT.0)) THEN
DO 125 NXV=1,NAEXV

EXVM(IM,JM,NXV) = EXVAR(I0,J0,NXV)
EXVM(IP,JM,NXV) = EXVAR(I0,J0,NXV)
EXVM(IM,JP,NXV) = EXVAR(I0,J0,NXV)
EXVM(IP,JP,NXV) = EXVAR(I0,J0,NXV)

125 CONTINUE
ENDIF

900 CONTINUE
1000 CONTINUE

C End 2D

ELSEIF (IGM.GE.30) THEN

C three dimensional problem...split into M AND P planes

KUP=MIN(KPLANE+1,KMAX)
KDOWN=MAX(KPLANE-1,1)
IF(LMAT.OR.LVEL.OR.LTPCE)THEN

C



 50

C Split volume fractions, preserving interfaces.
C

CALL VOFSPLIT(KPLANE, KUP, KDOWN,
C input

| IOFFS, ISTRT, IEND, JOFFS, JSTRT, JEND,
| LVOL,
| VVOID, VVOIDL, VVOIDU,
| VMAT, VMATL, VMATU,

C scratch (dimensioned IMAX)
| NMP,

C scratch (dimensioned IMAX*(NUMMAT+1))
| IMP, MATORD, VOLSUM,

C scratch (dimensioned IMAX*3*NUMMAT)
| GNRM,

C scratch (dimensioned NUMMAT+1)
| PHIE, PHIW, PHIN, PHIS, PHIU, PHID,
| DPHI, ICAT1, ICAT2, ICAT3,

C scratch (dimensioned 8*(NUMMAT+1))
| VOLSUMS,

C scratch (dimensioned 8)
| PDISS, PDISRS, VOLS, IPOS,

C output
| VOIDM, VOIDP, XMVM, XMVP)

ENDIF
C

DO 2000 JJ=JSTRT,JEND,2
J0 = JJ/2 + JOFFS
JM=MAX(JJ,1)
JP=MIN(JJ+1,JMAX)
DO 1900 II=ISTRT,IEND,2
I0 = II/2 + IOFFS
IM=MAX(II,1)
IP=MIN(II+1,IMAX)

C split material values
C

IF (LMAT) THEN
C
C Advection volume (during remap)
C

IF (LVOL) THEN
F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
F5 = F5/FD
F6 = F6/FD
F7 = F7/FD
F8 = F8/FD
DVOLXM(IM,JM) = F1*DVOLX(I0,J0)
DVOLXM(IP,JM) = F2*DVOLX(I0,J0)
DVOLXM(IM,JP) = F3*DVOLX(I0,J0)
DVOLXM(IP,JP) = F4*DVOLX(I0,J0)
DVOLXP(IM,JM) = F5*DVOLX(I0,J0)
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DVOLXP(IP,JM) = F6*DVOLX(I0,J0)
DVOLXP(IM,JP) = F7*DVOLX(I0,J0)
DVOLXP(IP,JP) = F8*DVOLX(I0,J0)
DVOLYM(IM,JM) = F1*DVOLY(I0,J0)
DVOLYM(IP,JM) = F2*DVOLY(I0,J0)
DVOLYM(IM,JP) = F3*DVOLY(I0,J0)
DVOLYM(IP,JP) = F4*DVOLY(I0,J0)
DVOLYP(IM,JM) = F5*DVOLY(I0,J0)
DVOLYP(IP,JM) = F6*DVOLY(I0,J0)
DVOLYP(IM,JP) = F7*DVOLY(I0,J0)
DVOLYP(IP,JP) = F8*DVOLY(I0,J0)
DVOLZM(IM,JM) = F1*DVOLZ(I0,J0)
DVOLZM(IP,JM) = F2*DVOLZ(I0,J0)
DVOLZM(IM,JP) = F3*DVOLZ(I0,J0)
DVOLZM(IP,JP) = F4*DVOLZ(I0,J0)
DVOLZP(IM,JM) = F5*DVOLZ(I0,J0)
DVOLZP(IP,JM) = F6*DVOLZ(I0,J0)
DVOLZP(IM,JP) = F7*DVOLZ(I0,J0)
DVOLZP(IP,JP) = F8*DVOLZ(I0,J0)
DIVM(IM,JM) = DIV(I0,J0)
DIVM(IP,JM) = DIV(I0,J0)
DIVM(IM,JP) = DIV(I0,J0)
DIVM(IP,JP) = DIV(I0,J0)
DIVP(IM,JM) = DIV(I0,J0)
DIVP(IP,JM) = DIV(I0,J0)
DIVP(IM,JP) = DIV(I0,J0)
DIVP(IP,JP) = DIV(I0,J0)

ENDIF

DO 1015 N=1,NUMMAT

IF(MATMMP.NE.0) THEN
PRSM(IM,JM,N) = PRES(I0,J0,N)
PRSM(IP,JM,N) = PRES(I0,J0,N)
PRSM(IM,JP,N) = PRES(I0,J0,N)
PRSM(IP,JP,N) = PRES(I0,J0,N)
PRSP(IM,JM,N) = PRES(I0,J0,N)
PRSP(IP,JM,N) = PRES(I0,J0,N)
PRSP(IM,JP,N) = PRES(I0,J0,N)
PRSP(IP,JP,N) = PRES(I0,J0,N)
ENDIF
IF(MATTMP.NE.0) THEN
TMPM(IM,JM,N) = TEMP(I0,J0,N)
TMPM(IP,JM,N) = TEMP(I0,J0,N)
TMPM(IM,JP,N) = TEMP(I0,J0,N)
TMPM(IP,JP,N) = TEMP(I0,J0,N)
TMPP(IM,JM,N) = TEMP(I0,J0,N)
TMPP(IP,JM,N) = TEMP(I0,J0,N)
TMPP(IM,JP,N) = TEMP(I0,J0,N)
TMPP(IP,JP,N) = TEMP(I0,J0,N)
ENDIF

C
C Split mass conserving volume (same density)
C

IF(LVOL)THEN
F1=XMASM(I0,J0,N)/VMAT(I0,J0,N)
XMSMM(IM,JM,N)=F1*XMVM(IM,JM,N)
XMSMM(IP,JM,N)=F1*XMVM(IP,JM,N)
XMSMM(IM,JP,N)=F1*XMVM(IM,JP,N)
XMSMM(IP,JP,N)=F1*XMVM(IP,JP,N)
XMSMP(IM,JM,N)=F1*XMVP(IM,JM,N)
XMSMP(IP,JM,N)=F1*XMVP(IP,JM,N)
XMSMP(IM,JP,N)=F1*XMVP(IM,JP,N)



 52

XMSMP(IP,JP,N)=F1*XMVP(IP,JP,N)
ELSE

F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
F5 = F5/FD
F6 = F6/FD
F7 = F7/FD
F8 = F8/FD
FD=XMASM(I0,J0,N)/VMAT(I0,J0,N)
XMSMM(IM,JM,N)=F1*FD*XMVM(IM,JM,N)
XMSMM(IP,JM,N)=F2*FD*XMVM(IP,JM,N)
XMSMM(IM,JP,N)=F3*FD*XMVM(IM,JP,N)
XMSMM(IP,JP,N)=F4*FD*XMVM(IP,JP,N)
XMSMP(IM,JM,N)=F5*FD*XMVP(IM,JM,N)
XMSMP(IP,JM,N)=F6*FD*XMVP(IP,JM,N)
XMSMP(IM,JP,N)=F7*FD*XMVP(IM,JP,N)
XMSMP(IP,JP,N)=F8*FD*XMVP(IP,JP,N)

ENDIF
XMEM(IM,JM,N) = ENRGM(I0,J0,N)
XMEM(IP,JM,N) = ENRGM(I0,J0,N)
XMEM(IM,JP,N) = ENRGM(I0,J0,N)
XMEM(IP,JP,N) = ENRGM(I0,J0,N)
XMEP(IM,JM,N) = ENRGM(I0,J0,N)
XMEP(IP,JM,N) = ENRGM(I0,J0,N)
XMEP(IM,JP,N) = ENRGM(I0,J0,N)
XMEP(IP,JP,N) = ENRGM(I0,J0,N)

C
1015 CONTINUE

C Total mass (void fraction computed during split)

XMSTM(IM,JM) = XMSMM(IM,JM,1)
XMSTM(IP,JM) = XMSMM(IP,JM,1)
XMSTM(IM,JP) = XMSMM(IM,JP,1)
XMSTM(IP,JP) = XMSMM(IP,JP,1)
XMSTP(IM,JM) = XMSMP(IM,JM,1)
XMSTP(IP,JM) = XMSMP(IP,JM,1)
XMSTP(IM,JP) = XMSMP(IM,JP,1)
XMSTP(IP,JP) = XMSMP(IP,JP,1)
DO 1045 N=2,NUMMAT
XMSTM(IM,JM)=XMSTM(IM,JM)+XMSMM(IM,JM,N)
XMSTM(IP,JM)=XMSTM(IP,JM)+XMSMM(IP,JM,N)
XMSTM(IM,JP)=XMSTM(IM,JP)+XMSMM(IM,JP,N)
XMSTM(IP,JP)=XMSTM(IP,JP)+XMSMM(IP,JP,N)
XMSTP(IM,JM)=XMSTP(IM,JM)+XMSMP(IM,JM,N)
XMSTP(IP,JM)=XMSTP(IP,JM)+XMSMP(IP,JM,N)
XMSTP(IM,JP)=XMSTP(IM,JP)+XMSMP(IM,JP,N)
XMSTP(IP,JP)=XMSTP(IP,JP)+XMSMP(IP,JP,N)

1045 CONTINUE
ENDIF

C split the pressures, artificial viscosities,
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C temperatures, total energies, and delta energies

IF(LVISC) THEN

C For refinement, zero the artificial viscosities

QXM(IM,JM) = PZERO
QXM(IP,JM) = PZERO
QXM(IM,JP) = PZERO
QXM(IP,JP) = PZERO
QXP(IM,JM) = PZERO
QXP(IP,JM) = PZERO
QXP(IM,JP) = PZERO
QXP(IP,JP) = PZERO

QYM(IM,JM) = PZERO
QYM(IP,JM) = PZERO
QYM(IM,JP) = PZERO
QYM(IP,JP) = PZERO
QYP(IM,JM) = PZERO
QYP(IP,JM) = PZERO
QYP(IM,JP) = PZERO
QYP(IP,JP) = PZERO

QZM(IM,JM) = PZERO
QZM(IP,JM) = PZERO
QZM(IM,JP) = PZERO
QZM(IP,JP) = PZERO
QZP(IM,JM) = PZERO
QZP(IP,JM) = PZERO
QZP(IM,JP) = PZERO
QZP(IP,JP) = PZERO

ENDIF

IF (LTPCE) THEN
IF (LVOL) THEN
F1=PONE/VOLXP(IM)/VOLYP(JM)/VOLZP(KPLANE)
F2=PONE/VOLXP(IP)/VOLYP(JM)/VOLZP(KPLANE)
F3=PONE/VOLXP(IM)/VOLYP(JP)/VOLZP(KPLANE)
F4=PONE/VOLXP(IP)/VOLYP(JP)/VOLZP(KPLANE)
F5=PONE/VOLXP(IM)/VOLYP(JM)/VOLZP(KUP)
F6=PONE/VOLXP(IP)/VOLYP(JM)/VOLZP(KUP)
F7=PONE/VOLXP(IM)/VOLYP(JP)/VOLZP(KUP)
F8=PONE/VOLXP(IP)/VOLYP(JP)/VOLZP(KUP)
ELSE
F1=PONE
F2=PONE
F3=PONE
F4=PONE
F5=PONE
F6=PONE
F7=PONE
F8=PONE
ENDIF

C The pressure variable is used to hold the
C advection volume in the remap step.

IF (.NOT.LVOL) THEN
PRSM(IM,JM,0) = F1*XMVM(IM,JM,1)*PRSM(IM,JM,1)
PRSM(IP,JM,0) = F2*XMVM(IP,JM,1)*PRSM(IP,JM,1)
PRSM(IM,JP,0) = F3*XMVM(IM,JP,1)*PRSM(IM,JP,1)
PRSM(IP,JP,0) = F4*XMVM(IP,JP,1)*PRSM(IP,JP,1)
PRSP(IM,JM,0) = F5*XMVP(IM,JM,1)*PRSP(IM,JM,1)
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PRSP(IP,JM,0) = F6*XMVP(IP,JM,1)*PRSP(IP,JM,1)
PRSP(IM,JP,0) = F7*XMVP(IM,JP,1)*PRSP(IM,JP,1)
PRSP(IP,JP,0) = F8*XMVP(IP,JP,1)*PRSP(IP,JP,1)
ENDIF
TMPM(IM,JM,0) = F1*XMVM(IM,JM,1)*TMPM(IM,JM,1)
TMPM(IP,JM,0) = F2*XMVM(IP,JM,1)*TMPM(IP,JM,1)
TMPM(IM,JP,0) = F3*XMVM(IM,JP,1)*TMPM(IM,JP,1)
TMPM(IP,JP,0) = F4*XMVM(IP,JP,1)*TMPM(IP,JP,1)
TMPP(IM,JM,0) = F5*XMVP(IM,JM,1)*TMPP(IM,JM,1)
TMPP(IP,JM,0) = F6*XMVP(IP,JM,1)*TMPP(IP,JM,1)
TMPP(IM,JP,0) = F7*XMVP(IM,JP,1)*TMPP(IM,JP,1)
TMPP(IP,JP,0) = F8*XMVP(IP,JP,1)*TMPP(IP,JP,1)
DO 1068 N=2,NUMMAT
IF (.NOT.LVOL) THEN
PRSM(IM,JM,0)=PRSM(IM,JM,0)

2 +F1*XMVM(IM,JM,N)*PRSM(IM,JM,N)
PRSM(IP,JM,0)=PRSM(IP,JM,0)

2 +F2*XMVM(IP,JM,N)*PRSM(IP,JM,N)
PRSM(IM,JP,0)=PRSM(IM,JP,0)

2 +F3*XMVM(IM,JP,N)*PRSM(IM,JP,N)
PRSM(IP,JP,0)=PRSM(IP,JP,0)

2 +F4*XMVM(IP,JP,N)*PRSM(IP,JP,N)
PRSP(IM,JM,0)=PRSP(IM,JM,0)

2 +F5*XMVP(IM,JM,N)*PRSP(IM,JM,N)
PRSP(IP,JM,0)=PRSP(IP,JM,0)

2 +F6*XMVP(IP,JM,N)*PRSP(IP,JM,N)
PRSP(IM,JP,0)=PRSP(IM,JP,0)

2 +F7*XMVP(IM,JP,N)*PRSP(IM,JP,N)
PRSP(IP,JP,0)=PRSP(IP,JP,0)

2 +F8*XMVP(IP,JP,N)*PRSP(IP,JP,N)
ENDIF
TMPM(IM,JM,0) = TMPM(IM,JM,0)

2 +F1*XMVM(IM,JM,N)*TMPM(IM,JM,N)
TMPM(IP,JM,0) = TMPM(IP,JM,0)

2 +F2*XMVM(IP,JM,N)*TMPM(IP,JM,N)
TMPM(IM,JP,0) = TMPM(IM,JP,0)

2 +F3*XMVM(IM,JP,N)*TMPM(IM,JP,N)
TMPM(IP,JP,0) = TMPM(IP,JP,0)

2 +F4*XMVM(IP,JP,N)*TMPM(IP,JP,N)
TMPP(IM,JM,0) = TMPP(IM,JM,0)

2 +F5*XMVP(IM,JM,N)*TMPP(IM,JM,N)
TMPP(IP,JM,0) = TMPP(IP,JM,0)

2 +F6*XMVP(IP,JM,N)*TMPP(IP,JM,N)
TMPP(IM,JP,0) = TMPP(IM,JP,0)

2 +F7*XMVP(IM,JP,N)*TMPP(IM,JP,N)
TMPP(IP,JP,0) = TMPP(IP,JP,0)

2 +F8*XMVP(IP,JP,N)*TMPP(IP,JP,N)
1068 CONTINUE
C The total energy variable is used to hold
C advection volume in the remap step.

IF (.NOT.LVOL) THEN
F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
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F4 = F4/FD
F5 = F5/FD
F6 = F6/FD
F7 = F7/FD
F8 = F8/FD
CEM(IM,JM) = F1*CE(I0,J0)
CEM(IP,JM) = F2*CE(I0,J0)
CEM(IM,JP) = F3*CE(I0,J0)
CEM(IP,JP) = F4*CE(I0,J0)
CEP(IM,JM) = F5*CE(I0,J0)
CEP(IP,JM) = F6*CE(I0,J0)
CEP(IM,JP) = F7*CE(I0,J0)
CEP(IP,JP) = F8*CE(I0,J0)
ENDIF

ENDIF

IF (LDE) THEN
F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
F1 = F1/FD
F2 = F2/FD
F3 = F3/FD
F4 = F4/FD
F5 = F5/FD
F6 = F6/FD
F7 = F7/FD
F8 = F8/FD
DEM(IM,JM) = F1*DE(I0,J0)
DEM(IP,JM) = F2*DE(I0,J0)
DEM(IM,JP) = F3*DE(I0,J0)
DEM(IP,JP) = F4*DE(I0,J0)
DEP(IM,JM) = F5*DE(I0,J0)
DEP(IP,JM) = F6*DE(I0,J0)
DEP(IM,JP) = F7*DE(I0,J0)
DEP(IP,JP) = F8*DE(I0,J0)

ENDIF
C
C split the velocities
C

IF (LVEL) THEN
C
C Determine momentum-averaged mid-plane velocities
C

I0P1=MIN(I0+1,IMAX)
F3=VX(I0,J0)
F1=(XMSTM(IM,JM)+XMSTM(IM,JP)+XMSTP(IM,JM)+XMSTP(IM,JP))

| /XMAST(I0,J0)
F2=(XMSTM(IP,JM)+XMSTM(IP,JP)+XMSTP(IP,JM)+XMSTP(IP,JP))

| /XMAST(I0,J0)
F6=(PONE-F1)*F3+(PONE-F2)*VX(I0P1,J0)
J0P1=MIN(J0+1,JMAX)
F4=VY(I0,J0)
F1=(XMSTM(IM,JM)+XMSTM(IP,JM)+XMSTP(IM,JM)+XMSTP(IP,JM))

| /XMAST(I0,J0)
F2=(XMSTM(IM,JP)+XMSTM(IP,JP)+XMSTP(IM,JP)+XMSTP(IP,JP))

| /XMAST(I0,J0)
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F7=(PONE-F1)*F4+(PONE-F2)*VY(I0,J0P1)
F5=VZ(I0,J0)
F1=(XMSTM(IM,JM)+XMSTM(IP,JM)+XMSTM(IM,JP)+XMSTM(IP,JP))

| /XMAST(I0,J0)
F2=(XMSTP(IM,JM)+XMSTP(IP,JM)+XMSTP(IM,JP)+XMSTP(IP,JP))

| /XMAST(I0,J0)
F8=(PONE-F1)*F5+(PONE-F2)*VZU(I0,J0)
VXM(IM,JM)=F3
VXM(IM,JP)=F3
VXP(IM,JM)=F3
VXP(IM,JP)=F3
VXM(IP,JM)=F6
VXM(IP,JP)=F6
VXP(IP,JM)=F6
VXP(IP,JP)=F6
VYM(IM,JM)=F4
VYM(IP,JM)=F4
VYP(IM,JM)=F4
VYP(IP,JM)=F4
VYM(IM,JP)=F7
VYM(IP,JP)=F7
VYP(IM,JP)=F7
VYP(IP,JP)=F7
VZM(IM,JM)=F5
VZM(IP,JM)=F5
VZM(IM,JP)=F5
VZM(IP,JP)=F5
VZP(IM,JM)=F8
VZP(IP,JM)=F8
VZP(IM,JP)=F8
VZP(IP,JP)=F8

ENDIF
C
C if stress deviators are present,
C split them
C

IF ((LSDEV).AND.(NSDD.GT.1)) THEN
DO 1110 NSD=1,NSDD

SIJM(IM,JM,NSD) = SIJ(I0,J0,NSD)
SIJM(IP,JM,NSD) = SIJ(I0,J0,NSD)
SIJM(IM,JP,NSD) = SIJ(I0,J0,NSD)
SIJM(IP,JP,NSD) = SIJ(I0,J0,NSD)
SIJP(IM,JM,NSD) = SIJ(I0,J0,NSD)
SIJP(IP,JM,NSD) = SIJ(I0,J0,NSD)
SIJP(IM,JP,NSD) = SIJ(I0,J0,NSD)
SIJP(IP,JP,NSD) = SIJ(I0,J0,NSD)

1110 CONTINUE
ENDIF

C
C if internal state variables are present,
C split them
C

IF ((LXTVAR).AND.(NAEXV.GT.0)) THEN
DO 1125 NXV=1,NAEXV

EXVM(IM,JM,NXV) = EXVAR(I0,J0,NXV)
EXVM(IP,JM,NXV) = EXVAR(I0,J0,NXV)
EXVM(IM,JP,NXV) = EXVAR(I0,J0,NXV)
EXVM(IP,JP,NXV) = EXVAR(I0,J0,NXV)
EXVP(IM,JM,NXV) = EXVAR(I0,J0,NXV)
EXVP(IP,JM,NXV) = EXVAR(I0,J0,NXV)
EXVP(IM,JP,NXV) = EXVAR(I0,J0,NXV)
EXVP(IP,JP,NXV) = EXVAR(I0,J0,NXV)

1125 CONTINUE
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ENDIF

1900 CONTINUE
2000 CONTINUE

ENDIF
C
C--------------------------------------------------------------------
C

RETURN
END
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Routine VOFSPLIT.F 
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          SUBROUTINE VOFSPLIT(KPLANE, KUP, KDOWN,
C input

| IOFFS, ISTRT, IEND, JOFFS, JSTRT, JEND,
| LVOL,
| PHIV, PHIVL, PHIVU,
| PHIM, PHIML, PHIMU,

C scratch (dimensioned IMAX)
| NMP,

C scratch (dimensioned IMAX*(NUMMAT+1))
| IMP, MATORD, VOLSUM,

C scratch (dimensioned IMAX*3*NUMMAT)
| GNRM,

C scratch (dimensioned NUMMAT+1)
| PHIE, PHIW, PHIN, PHIS, PHIU, PHID,
| DPHI, ICAT1, ICAT2, ICAT3,

C scratch (dimensioned 8*(NUMMAT+1))
| VOLSUMS,

C scratch (dimensioned 8)
| PDISS, PDISRS, VOLS, IPOS,

C output
| PHIVM, PHIVP, PHIMM, PHIMP)

C
C*************************************************
C
C This subroutine partitions the material and void
C volume fractions from the parent cells in a particular
C kplane to the child cells in one quadrant of the
C child kplane. Successive calls to this routine will
C split an entire parent kplane into the two child
C kplanes in four quadrants.
C
C*************************************************
C
#include "impdoubl.h"
#include "dbcdim.h"
#include "dbcvol.h"
#include "dbcxyz.h"
#include "comint.h"
#include "iofils.h"
C

DIMENSION PHIV(IMAX,JMAX),PHIVL(IMAX,JMAX),PHIVU(IMAX,JMAX),
| PHIM(IMAX,JMAX,NUMMAT),PHIML(IMAX,JMAX,NUMMAT),
| PHIMU(IMAX,JMAX,NUMMAT)

C
DIMENSION NMP(IMAX),IMP(IMAX,NUMMAT+1),

| MATORD(IMAX,NUMMAT+1),VOLSUM(IMAX,NUMMAT+1),
| GNRM(IMAX,3,NUMMAT+1),PHIE(NUMMAT+1),PHIW(NUMMAT+1),
| PHIN(NUMMAT+1),PHIS(NUMMAT+1),PHIU(NUMMAT+1),
| PHID(NUMMAT+1),DPHI(NUMMAT+1),ICAT1(NUMMAT+1),
| ICAT2(NUMMAT+1),ICAT3(NUMMAT+1),VOLSUMS(8,NUMMAT+1),
| PDISS(8),PDISRS(8),VOLS(8),IPOS(8)

C
DIMENSION PHIVM(IMAX,JMAX),PHIVP(IMAX,JMAX),

| PHIMM(IMAX,JMAX,NUMMAT),PHIMP(IMAX,JMAX,NUMMAT)
C

LOGICAL LVOL
C

PARAMETER(PZERO=0.D0,PONE=1.D0)
C

IF(LVOL)THEN
DO 20 JJ=JSTRT,JEND,2

J0 = JJ/2 + JOFFS
JM=MAX(JJ,1)
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JP=MIN(JJ+1,JMAX)
DO 25 II=ISTRT,IEND,2

I0 = II/2 + IOFFS
IM=MAX(II,1)
IP=MIN(II+1,IMAX)
F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
PHIV(I0,J0)=PHIV(I0,J0)/FD
PHIVL(I0,J0)=PHIVL(I0,J0)/FD
PHIVU(I0,J0)=PHIVU(I0,J0)/FD
DO 30 MAT=1,NUMMAT

PHIM(I0,J0,MAT)=PHIM(I0,J0,MAT)/FD
PHIML(I0,J0,MAT)=PHIML(I0,J0,MAT)/FD
PHIMU(I0,J0,MAT)=PHIMU(I0,J0,MAT)/FD

30 CONTINUE
25 CONTINUE
20 CONTINUE

ENDIF
C
C Initialize arrays
C

DO 80 J=1,JMAX
DO 90 I=1,IMAX

PHIVM(I,J)=PZERO
PHIVP(I,J)=PZERO
DO 95 MAT=1,NUMMAT

PHIMM(I,J,MAT)=PZERO
PHIMP(I,J,MAT)=PZERO

95 CONTINUE
90 CONTINUE
80 CONTINUE

C
C loop over all rows
C

DO 100 JJ=JSTRT,JEND,2
J = JJ/2 + JOFFS
DO 110 II=ISTRT,IEND,2

I = II/2 + IOFFS
IMAT=0
IF(PHIV(I,J).NE.PZERO)THEN

IF(PHIV(I,J).EQ.PONE)THEN
J1=MAX(JJ,1)
J1P1=MIN(JJ+1,JMAX)
I1=MAX(II,1)
I1P1=MIN(II+1,IMAX)
PHIVM(I1,J1)=PONE
PHIVM(I1P1,J1)=PONE
PHIVM(I1,J1P1)=PONE
PHIVM(I1P1,J1P1)=PONE
PHIVP(I1,J1)=PONE
PHIVP(I1P1,J1)=PONE
PHIVP(I1,J1P1)=PONE
PHIVP(I1P1,J1P1)=PONE
DO 115 MAT=1,NUMMAT

PHIMM(I1,J1,MAT)=PZERO
PHIMM(I1P1,J1,MAT)=PZERO
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PHIMM(I1,J1P1,MAT)=PZERO
PHIMM(I1P1,J1P1,MAT)=PZERO
PHIMP(I1,J1,MAT)=PZERO
PHIMP(I1P1,J1,MAT)=PZERO
PHIMP(I1,J1P1,MAT)=PZERO
PHIMP(I1P1,J1P1,MAT)=PZERO

115 CONTINUE
NMP(I)=0
GOTO110

ELSE
IMAT=IMAT+1
IMP(I,IMAT)=0

ENDIF
ENDIF
DO 120 MAT=1,NUMMAT

IF(PHIM(I,J,MAT).NE.PZERO)THEN
IF(PHIM(I,J,MAT).EQ.PONE)THEN

J1=MAX(JJ,1)
J1P1=MIN(JJ+1,JMAX)
I1=MAX(II,1)
I1P1=MIN(II+1,IMAX)
PHIMM(I1,J1,MAT)=PONE
PHIMM(I1P1,J1,MAT)=PONE
PHIMM(I1,J1P1,MAT)=PONE
PHIMM(I1P1,J1P1,MAT)=PONE
PHIMP(I1,J1,MAT)=PONE
PHIMP(I1P1,J1,MAT)=PONE
PHIMP(I1,J1P1,MAT)=PONE
PHIMP(I1P1,J1P1,MAT)=PONE
PHIVM(I1,J1)=PZERO
PHIVM(I1P1,J1)=PZERO
PHIVM(I1,J1P1)=PZERO
PHIVM(I1P1,J1P1)=PZERO
PHIVP(I1,J1)=PZERO
PHIVP(I1P1,J1)=PZERO
PHIVP(I1,J1P1)=PZERO
PHIVP(I1P1,J1P1)=PZERO
DO 130 MMAT=1,NUMMAT

IF(MMAT.EQ.MAT)GOTO130
PHIMM(I1,J1,MMAT)=PZERO
PHIMM(I1P1,J1,MMAT)=PZERO
PHIMM(I1,J1P1,MMAT)=PZERO
PHIMM(I1P1,J1P1,MMAT)=PZERO
PHIMP(I1,J1,MMAT)=PZERO
PHIMP(I1P1,J1,MMAT)=PZERO
PHIMP(I1,J1P1,MMAT)=PZERO
PHIMP(I1P1,J1P1,MMAT)=PZERO

130 CONTINUE
NMP(I)=0
GOTO110

ELSE
IMAT=IMAT+1
IMP(I,IMAT)=MAT

ENDIF
ENDIF

120 CONTINUE
C

NMP(I)=IMAT

110 CONTINUE
C
C For mixed material cells, determine the ordering of the
C materials in the cell.
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C
CALL MORDER(KPLANE, KUP, KDOWN, J,

C input
| ISTRT, IEND, IOFFS, IMP, NMP, PHIV,
| PHIVL, PHIVU, PHIM, PHIML, PHIMU,

C output
| MATORD,

C scratch (dimensioned NUMMAT+1)
| PHIE, PHIW, PHIN, PHIS, PHIU, PHID,
| DPHI, ICAT1, ICAT2, ICAT3)

C
C Determine volume fraction sums and the direction
C of interface plane normals for material interfaces
C in this row.
C

CALL GRADVOF(KPLANE, KUP, KDOWN, J,
C input

| ISTRT, IEND, IOFFS, IMP, NMP, MATORD,
| PHIV, PHIVL, PHIVU, PHIM, PHIML,
| PHIMU,

C output
| GNRM, VOLSUM,

C scratch (dimensioned NUMMAT+1)
| PHIE, PHIW, PHIN, PHIS, PHIU,
| PHID)

C
C Using Youngs algorithm determine the distance from
C a corner of the unit cube to the interface plane.
C Then compute volume fractions for the eight subdivided
C cells.
C

CALL PARTVOF(JJ, ISTRT, IEND, IOFFS,
C input

| IMP, NMP, MATORD,
| GNRM, VOLSUM,

C output
| PHIVM, PHIVP, PHIMM, PHIMP,

C scratch (dimensioned 8*(NUMMAT+1))
| VOLSUMS,

C scratch (dimensioned 8)
| PDISS, PDISRS, VOLS, IPOS)

C
100 CONTINUE

C
C

IF(LVOL)THEN
DO 200 JJ=JSTRT,JEND,2

J0 = JJ/2 + JOFFS
JM=MAX(JJ,1)
JP=MIN(JJ+1,JMAX)
DO 210 II=ISTRT,IEND,2

I0 = II/2 + IOFFS
IM=MAX(II,1)
IP=MIN(II+1,IMAX)
F1 = VOLXP(IM)*VOLYP(JM)*VOLZP(KPLANE)
F2 = VOLXP(IP)*VOLYP(JM)*VOLZP(KPLANE)
F3 = VOLXP(IM)*VOLYP(JP)*VOLZP(KPLANE)
F4 = VOLXP(IP)*VOLYP(JP)*VOLZP(KPLANE)
F5 = VOLXP(IM)*VOLYP(JM)*VOLZP(KUP)
F6 = VOLXP(IP)*VOLYP(JM)*VOLZP(KUP)
F7 = VOLXP(IM)*VOLYP(JP)*VOLZP(KUP)
F8 = VOLXP(IP)*VOLYP(JP)*VOLZP(KUP)
FD = F1+F2+F3+F4+F5+F6+F7+F8
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PHIV(I0,J0)=PHIV(I0,J0)*FD
PHIVL(I0,J0)=PHIVL(I0,J0)*FD
PHIVU(I0,J0)=PHIVU(I0,J0)*FD
PHIVM(IM,JM)=PHIVM(IM,JM)*F1
PHIVM(IP,JM)=PHIVM(IP,JM)*F2
PHIVM(IM,JP)=PHIVM(IM,JP)*F3
PHIVM(IP,JP)=PHIVM(IP,JP)*F4
PHIVP(IM,JM)=PHIVM(IM,JM)*F5
PHIVP(IP,JM)=PHIVM(IP,JM)*F6
PHIVP(IM,JP)=PHIVM(IM,JP)*F7
PHIVP(IP,JP)=PHIVM(IP,JP)*F8
DO 220 MAT=1,NUMMAT

PHIM(I0,J0,MAT)=PHIM(I0,J0,MAT)*FD
PHIML(I0,J0,MAT)=PHIML(I0,J0,MAT)*FD
PHIMU(I0,J0,MAT)=PHIMU(I0,J0,MAT)*FD
PHIMM(IM,JM,MAT)=PHIMM(IM,JM,MAT)*F1
PHIMM(IP,JM,MAT)=PHIMM(IP,JM,MAT)*F2
PHIMM(IM,JP,MAT)=PHIMM(IM,JP,MAT)*F3
PHIMM(IP,JP,MAT)=PHIMM(IP,JP,MAT)*F4
PHIMP(IM,JM,MAT)=PHIMP(IM,JM,MAT)*F5
PHIMP(IP,JM,MAT)=PHIMP(IP,JM,MAT)*F6
PHIMP(IM,JP,MAT)=PHIMP(IM,JP,MAT)*F7
PHIMP(IP,JP,MAT)=PHIMP(IP,JP,MAT)*F8

220 CONTINUE
210 CONTINUE
200 CONTINUE

ENDIF
C
C

RETURN
END
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Routine MORDER.F 
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          SUBROUTINE MORDER(KPLANE, KUP, KDOWN, J,
C input

| ISTRT, IEND, IOFFS, IMP, NMP, PHIV,
| PHIVL, PHIVU, PHIM, PHIML, PHIMU,

C output
| MATORD,

C scratch (dimensioned NUMMAT+1)
| PHIE, PHIW, PHIN, PHIS, PHIU, PHID,
| DPHI, ICAT1, ICAT2, ICAT3)

C
C*************************************************
C
C This subroutine determines the order of the
C materials in mixed cells.
C
C*************************************************
C
#include "impdoubl.h"
#include "dbcdim.h"
#include "dbcvol.h"
#include "dbcxyz.h"
#include "comint.h"
#include "iofils.h"
C
C

DIMENSION IMP(IMAX,NUMMAT),NMP(IMAX)
DIMENSION PHIV(IMAX,JMAX),PHIVL(IMAX,JMAX),PHIVU(IMAX,JMAX)
DIMENSION PHIM(IMAX,JMAX,NUMMAT),PHIML(IMAX,JMAX,NUMMAT)
DIMENSION PHIMU(IMAX,JMAX,NUMMAT)

C
DIMENSION MATORD(IMAX,NUMMAT+1)

C
DIMENSION PHIE(NUMMAT+1),PHIW(NUMMAT+1),PHIN(NUMMAT+1)
DIMENSION PHIS(NUMMAT+1),PHIU(NUMMAT+1),PHID(NUMMAT+1)
DIMENSION ICAT1(NUMMAT+1),ICAT2(NUMMAT+1),ICAT3(NUMMAT+1)
DIMENSION DPHI(NUMMAT+1)

C
PARAMETER(PZERO=0.D0,PTWO=2.D0,PFOUR=4.D0)

C
C main loop
C

DO 100 II=ISTRT,IEND,2
I=II/2+IOFFS
NMAT=NMP(I)
IF(NMAT.EQ.0)GOTO100

C
IP3=MIN(I+3,IMAX)
IP2=MIN(I+2,IMAX)
IP1=MIN(I+1,IMAX)
IM1=MAX(I-1,1)
IM2=MAX(I-2,1)
JP3=MIN(J+3,JMAX)
JP2=MIN(J+2,JMAX)
JP1=MIN(J+1,JMAX)
JM1=MAX(J-1,1)
JM2=MAX(J-2,1)
KP3=MIN(KPLANE+3,KMAX)
KP2=MIN(KPLANE+2,KMAX)
KM2=MAX(KPLANE-2,1)

C
DD=DDX(I)+DDX(IP1)
DDE=(DDX(IP2)+DDX(IP3))/DD
DDW=(DDX(IM1)+DDX(IM2))/DD
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DD=DDY(J)+DDY(JP1)
DDN=(DDY(JP2)+DDY(JP3))/DD
DDS=(DDY(JM1)+DDY(JM2))/DD
DD=DDZ(KPLANE)+DDZ(KUP)
DDU=(DDZ(KP2)+DDZ(KP3))/DD
DDD=(DDZ(KDOWN)+DDZ(KM2))/DD

C
DO 110 MMAT=1,NMAT

MAT=IMP(I,MMAT)
IF(MAT.EQ.0)THEN

C
DENOM=(PTWO+DDS+DDN)*(PTWO+DDU+DDD)

C
PHIW(MMAT)=(DDD*(DDS*PHIVL(IM1,JM1)+

| DDN*PHIVL(IM1,JP1))+
| DDU*(DDS*PHIVU(IM1,JM1)+
| DDN*PHIVU(IM1,JP1))+
| PTWO*(DDD*PHIVL(IM1,J)+
| DDU*PHIVU(IM1,J)+
| DDS*PHIV(IM1,JM1)+
| DDN*PHIV(IM1,JP1))+
| PFOUR*PHIV(IM1,J))/DENOM

C
PHIE(MMAT)=(DDD*(DDS*PHIVL(IP1,JM1)+

| DDN*PHIVL(IP1,JP1))+
| DDU*(DDS*PHIVU(IP1,JM1)+
| DDN*PHIVU(IP1,JP1))+
| PTWO*(DDD*PHIVL(IP1,J)+
| DDU*PHIVU(IP1,J)+
| DDS*PHIV(IP1,JM1)+
| DDN*PHIV(IP1,JP1))+
| PFOUR*PHIV(IM1,J))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDU+DDD)

C
PHIS(MMAT)=(DDD*(DDW*PHIVL(IM1,JM1)+

| DDE*PHIVL(IP1,JM1))+
| DDU*(DDW*PHIVU(IM1,JM1)+
| DDE*PHIVU(IP1,JM1))+
| PTWO*(DDD*PHIVL(I,JM1)+
| DDU*PHIVU(I,JM1)+
| DDW*PHIV(IM1,JM1)+
| DDE*PHIV(IP1,JM1))+
| PFOUR*PHIV(I,JM1))/DENOM

C
PHIN(MMAT)=(DDD*(DDW*PHIVL(IM1,JP1)+

| DDE*PHIVL(IP1,JP1))+
| DDU*(DDW*PHIVU(IM1,JP1)+
| DDE*PHIVU(IP1,JP1))+
| PTWO*(DDD*PHIVL(I,JP1)+
| DDU*PHIVU(I,JP1)+
| DDW*PHIV(IM1,JP1)+
| DDE*PHIV(IP1,JP1))+
| PFOUR*PHIV(I,JP1))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDS+DDN)

C
PHID(MMAT)=(DDS*(DDW*PHIVL(IM1,JM1)+

| DDE*PHIVL(IP1,JM1))+
| DDN*(DDW*PHIVL(IM1,JP1)+
| DDE*PHIVL(IP1,JP1))+
| PTWO*(DDS*PHIVL(I,JM1)+
| DDN*PHIVL(I,JP1)+
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| DDW*PHIVL(IM1,J)+
| DDE*PHIVL(IP1,J))+
| PFOUR*PHIVL(I,J))/DENOM

C
PHIU(MMAT)=(DDS*(DDW*PHIVU(IM1,JM1)+

| DDE*PHIVU(IP1,JM1))+
| DDN*(DDW*PHIVU(IM1,JP1)+
| DDE*PHIVU(IP1,JP1))+
| PTWO*(DDS*PHIVU(I,JM1)+
| DDN*PHIVU(I,JP1)+
| DDW*PHIVU(IM1,J)+
| DDE*PHIVU(IP1,J))+
| PFOUR*PHIVL(I,J))/DENOM

C
ELSE

C
DENOM=(PTWO+DDS+DDN)*(PTWO+DDU+DDD)

C
PHIW(MMAT)=(DDD*(DDS*PHIML(IM1,JM1,MAT)+

| DDN*PHIML(IM1,JP1,MAT))+
| DDU*(DDS*PHIMU(IM1,JM1,MAT)+
| DDN*PHIMU(IM1,JP1,MAT))+
| PTWO*(DDD*PHIML(IM1,J,MAT)+
| DDU*PHIMU(IM1,J,MAT)+
| DDS*PHIM(IM1,JM1,MAT)+
| DDN*PHIM(IM1,JP1,MAT))+
| PFOUR*PHIM(IM1,J,MAT))/DENOM

C
PHIE(MMAT)=(DDD*(DDS*PHIML(IP1,JM1,MAT)+

| DDN*PHIML(IP1,JP1,MAT))+
| DDU*(DDS*PHIMU(IP1,JM1,MAT)+
| DDN*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDD*PHIML(IP1,J,MAT)+
| DDU*PHIMU(IP1,J,MAT)+
| DDS*PHIM(IP1,JM1,MAT)+
| DDN*PHIM(IP1,JP1,MAT))+
| PFOUR*PHIM(IP1,J,MAT))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDU+DDD)

C
PHIS(MMAT)=(DDD*(DDW*PHIML(IM1,JM1,MAT)+

| DDE*PHIML(IP1,JM1,MAT))+
| DDU*(DDW*PHIMU(IM1,JM1,MAT)+
| DDE*PHIMU(IP1,JM1,MAT))+
| PTWO*(DDD*PHIML(I,JM1,MAT)+
| DDU*PHIMU(I,JM1,MAT)+
| DDW*PHIM(IM1,JM1,MAT)+
| DDE*PHIM(IP1,JM1,MAT))+
| PFOUR*PHIM(I,JM1,MAT))/DENOM

C
PHIN(MMAT)=(DDD*(DDW*PHIML(IM1,JP1,MAT)+

| DDE*PHIML(IP1,JP1,MAT))+
| DDU*(DDW*PHIMU(IM1,JP1,MAT)+
| DDE*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDD*PHIML(I,JP1,MAT)+
| DDU*PHIMU(I,JP1,MAT)+
| DDW*PHIM(IM1,JP1,MAT)+
| DDE*PHIM(IP1,JP1,MAT))+
| PFOUR*PHIM(I,JP1,MAT))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDS+DDN)

C
PHID(MMAT)=(DDS*(DDW*PHIML(IM1,JM1,MAT)+
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| DDE*PHIML(IP1,JM1,MAT))+
| DDN*(DDW*PHIML(IM1,JP1,MAT)+
| DDE*PHIML(IP1,JP1,MAT))+
| PTWO*(DDS*PHIML(I,JM1,MAT)+
| DDN*PHIML(I,JP1,MAT)+
| DDW*PHIML(IM1,J,MAT)+
| DDE*PHIML(IP1,J,MAT))+
| PFOUR*PHIML(I,J,MAT))/DENOM

C
PHIU(MMAT)=(DDS*(DDW*PHIMU(IM1,JM1,MAT)+

| DDE*PHIMU(IP1,JM1,MAT))+
| DDN*(DDW*PHIMU(IM1,JP1,MAT)+
| DDE*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDS*PHIMU(I,JM1,MAT)+
| DDN*PHIMU(I,JP1,MAT)+
| DDW*PHIMU(IM1,J,MAT)+
| DDE*PHIMU(IP1,J,MAT))+
| PFOUR*PHIMU(I,J,MAT))/DENOM

ENDIF
C
110 CONTINUE

C
C Test to see in which direction the material
C ordering will be based.
C

DPHIXMAX=-PTWO
DPHIXMIN=PTWO
DPHIYMAX=-PTWO
DPHIYMIN=PTWO
DPHIZMAX=-PTWO
DPHIZMIN=PTWO
DO 120 MMAT=1,NMAT

XTEST=PHIE(MMAT)-PHIW(MMAT)
DPHIXMAX=MAX(DPHIXMAX,XTEST)
DPHIXMIN=MIN(DPHIXMIN,XTEST)
YTEST=PHIN(MMAT)-PHIS(MMAT)
DPHIYMAX=MAX(DPHIYMAX,YTEST)
DPHIYMIN=MIN(DPHIYMIN,YTEST)
ZTEST=PHIU(MMAT)-PHID(MMAT)
DPHIZMAX=MAX(DPHIZMAX,ZTEST)
DPHIZMIN=MIN(DPHIZMIN,ZTEST)

120 CONTINUE
C

XTEST=DPHIXMAX-DPHIXMIN
YTEST=DPHIYMAX-DPHIYMIN
ZTEST=DPHIZMAX-DPHIZMIN
XYZMAX=MAX(XTEST,YTEST,ZTEST)

C
NCAT1=0
NCAT2=0
NCAT3=0
IF(XYZMAX.EQ.XTEST)THEN

C
C Use x direction ordering. First group materials
C according to categories.
C Category 1: some ahead, none behind.
C Category 2: some ahead and behind (or none ahead or behind).
C Category 3: none ahead, some behind.
C

DO 130 MMAT=1,NMAT
DPHI(MMAT)=PHIE(MMAT)-PHIW(MMAT)
IF(PHIE(MMAT).GT.PZERO.AND.PHIW(MMAT).EQ.PZERO)THEN

NCAT1=NCAT1+1
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ICAT1(NCAT1)=MMAT
ELSEIF(PHIE(MMAT).EQ.PZERO.AND.PHIW(MMAT).GT.PZERO)THEN

NCAT3=NCAT3+1
ICAT3(NCAT3)=MMAT

ELSE
NCAT2=NCAT2+1
ICAT2(NCAT2)=MMAT

ENDIF
130 CONTINUE

C
ELSEIF(XYZMAX.EQ.YTEST)THEN

C
C Use y direction ordering.
C

DO 140 MMAT=1,NMAT
DPHI(MMAT)=PHIN(MMAT)-PHIS(MMAT)
IF(PHIN(MMAT).GT.PZERO.AND.PHIS(MMAT).EQ.PZERO)THEN

NCAT1=NCAT1+1
ICAT1(NCAT1)=MMAT

ELSEIF(PHIN(MMAT).EQ.PZERO.AND.PHIS(MMAT).GT.PZERO)THEN
NCAT3=NCAT3+1
ICAT3(NCAT3)=MMAT

ELSE
NCAT2=NCAT2+1
ICAT2(NCAT2)=MMAT

ENDIF
140 CONTINUE

C
ELSE

C
C Use z direction ordering.
C

DO 150 MMAT=1,NMAT
DPHI(MMAT)=PHIU(MMAT)-PHID(MMAT)
IF(PHIU(MMAT).GT.PZERO.AND.PHID(MMAT).EQ.PZERO)THEN

NCAT1=NCAT1+1
ICAT1(NCAT1)=MMAT

ELSEIF(PHIU(MMAT).EQ.PZERO.AND.PHID(MMAT).GT.PZERO)THEN
NCAT3=NCAT3+1
ICAT3(NCAT3)=MMAT

ELSE
NCAT2=NCAT2+1
ICAT2(NCAT2)=MMAT

ENDIF
150 CONTINUE

C
ENDIF

C
C Order category 1 materials first, from largest
C to smallest.
C

NORD=0
155 DPHIMAX=-PTWO

IF(NORD.EQ.NCAT1)GOTO165
DO 160 ICAT=1,NCAT1

MMAT=ICAT1(ICAT)
IF(DPHI(MMAT).GT.DPHIMAX)THEN

DPHIMAX=DPHI(MMAT)
NEXT=MMAT

ENDIF
160 CONTINUE

C
NORD=NORD+1
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MATORD(I,NORD)=NEXT
DPHI(NEXT)=-PTWO
GOTO155

C
C Now category 2, from largest to smallest. Note
C that fragments will be ordered according to their
C material number (probably should be placed in
C random order later).
C
165 DPHIMAX=-PTWO

IF(NORD.EQ.NCAT1+NCAT2)GOTO175
DO 170 ICAT=1,NCAT2

MMAT=ICAT2(ICAT)
IF(DPHI(MMAT).GT.DPHIMAX)THEN

DPHIMAX=DPHI(MMAT)
NEXT=MMAT

ENDIF
170 CONTINUE

C
NORD=NORD+1
MATORD(I,NORD)=NEXT
DPHI(NEXT)=-PTWO
GOTO165

C
C Now category 3 materials.
C
175 DPHIMAX=-PTWO

IF(NORD.EQ.NCAT1+NCAT2+NCAT3)GOTO200
DO 180 ICAT=1,NCAT3

MMAT=ICAT3(ICAT)
IF(DPHI(MMAT).GT.DPHIMAX)THEN

DPHIMAX=DPHI(MMAT)
NEXT=MMAT

ENDIF
180 CONTINUE

C
NORD=NORD+1
MATORD(I,NORD)=NEXT
DPHI(NEXT)=-PTWO
GOTO175

C
200 CONTINUE

C
100 CONTINUE

C
C

RETURN
END
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Routine GRADVOF.F 
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          SUBROUTINE GRADVOF(KPLANE, KUP, KDOWN, J,
C input

| ISTRT, IEND, IOFFS, IMP, NMP, MATORD,
| PHIV, PHIVL, PHIVU, PHIM, PHIML,
| PHIMU,

C output
| GNRM, VOLSUM,

C scratch (dimensioned NUMMAT+1)
| VOFE, VOFW, VOFN, VOFS, VOFU,
| VOFD)

C
C
C*************************************************
C
C This subroutine sums the volume fractions using
C the ordering determined in subroutine MORDER and
C computes normals for each of the interface
C planes.
C
C*************************************************
C
C
#include "impdoubl.h"
#include "dbcdim.h"
#include "dbcvol.h"
#include "dbcxyz.h"
#include "comint.h"
#include "iofils.h"
#include "vofrnd.h"
C

DIMENSION IMP(IMAX,NUMMAT),NMP(IMAX),MATORD(IMAX,NUMMAT+1)
DIMENSION PHIV(IMAX,JMAX),PHIVL(IMAX,JMAX),PHIVU(IMAX,JMAX)
DIMENSION PHIM(IMAX,JMAX,NUMMAT),PHIML(IMAX,JMAX,NUMMAT)
DIMENSION PHIMU(IMAX,JMAX,NUMMAT)

C
DIMENSION GNRM(IMAX,3,NUMMAT),VOLSUM(IMAX,NUMMAT+1)

C
DIMENSION VOFE(NUMMAT+1),VOFW(NUMMAT+1),VOFN(NUMMAT+1)
DIMENSION VOFS(NUMMAT+1),VOFU(NUMMAT+1),VOFD(NUMMAT+1)

C
PARAMETER(PZERO=0.D0,PONE=1.D0,PTWO=2.D0,PFOUR=4.D0,

| PHALF=PONE/PTWO)
C
C main loop
C

DO 100 II=ISTRT,IEND,2
I=II/2+IOFFS
NMAT=NMP(I)
IF(NMAT.EQ.0)GOTO100

C
IP3=MIN(I+3,IMAX)
IP2=MIN(I+2,IMAX)
IP1=MIN(I+1,IMAX)
IM1=MAX(I-1,1)
IM2=MAX(I-2,1)
JP3=MIN(J+3,JMAX)
JP2=MIN(J+2,JMAX)
JP1=MIN(J+1,JMAX)
JM1=MAX(J-1,1)
JM2=MAX(J-2,1)
KP3=MIN(KPLANE+3,KMAX)
KP2=MIN(KPLANE+2,KMAX)
KM2=MAX(KPLANE-2,1)
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C
DD=DDX(I)+DDX(IP1)
DDE=(DDX(IP2)+DDX(IP3))/DD
DDW=(DDX(IM1)+DDX(IM2))/DD
DD=DDY(J)+DDY(JP1)
DDN=(DDY(JP2)+DDY(JP3))/DD
DDS=(DDY(JM1)+DDY(JM2))/DD
DD=DDZ(KPLANE)+DDZ(KUP)
DDU=(DDZ(KP2)+DDZ(KP3))/DD
DDD=(DDZ(KDOWN)+DDZ(KM2))/DD

C
SUMVOF=PZERO
SUMVOFW=PZERO
SUMVOFE=PZERO
SUMVOFS=PZERO
SUMVOFN=PZERO
SUMVOFD=PZERO
SUMVOFU=PZERO

C
C Determine volume fraction sums based on the material
C ordering. The contents of volsum are:
C volsum(i,1) = all volume fractions (should be one)
C volsum(i,2) = all volume fractions except the first
C material in the matord array
C volsum(i,3) = all volume fractions except the first
C two materials in the matord array
C ... etc.
C The arrays vofe, vofw, vofn, vofs, vofu and vofd are also
C summed this way.
C

DO 110 IORD=NMAT,1,-1
MMAT=MATORD(I,IORD)
MAT=IMP(I,MMAT)
IF(MAT.EQ.0)THEN

C
SUMVOF=SUMVOF+PHIV(I,J)

C
DENOM=(PTWO+DDS+DDN)*(PTWO+DDU+DDD)

C
SUMVOFW=SUMVOFW+

| (DDD*(DDS*PHIVL(IM1,JM1)+
| DDN*PHIVL(IM1,JP1))+
| DDU*(DDS*PHIVU(IM1,JM1)+
| DDN*PHIVU(IM1,JP1))+
| PTWO*(DDD*PHIVL(IM1,J)+
| DDU*PHIVU(IM1,J)+
| DDS*PHIV(IM1,JM1)+
| DDN*PHIV(IM1,JP1))+
| PFOUR*PHIV(IM1,J))/DENOM

C
SUMVOFE=SUMVOFE+

| (DDD*(DDS*PHIVL(IP1,JM1)+
| DDN*PHIVL(IP1,JP1))+
| DDU*(DDS*PHIVU(IP1,JM1)+
| DDN*PHIVU(IP1,JP1))+
| PTWO*(DDD*PHIVL(IP1,J)+
| DDU*PHIVU(IP1,J)+
| DDS*PHIV(IP1,JM1)+
| DDN*PHIV(IP1,JP1))+
| PFOUR*PHIV(IP1,J))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDU+DDD)

C



 74

SUMVOFS=SUMVOFS+
| (DDD*(DDW*PHIVL(IM1,JM1)+
| DDE*PHIVL(IP1,JM1))+
| DDU*(DDW*PHIVU(IM1,JM1)+
| DDE*PHIVU(IP1,JM1))+
| PTWO*(DDD*PHIVL(I,JM1)+
| DDU*PHIVU(I,JM1)+
| DDW*PHIV(IM1,JM1)+
| DDE*PHIV(IP1,JM1))+
| PFOUR*PHIV(I,JM1))/DENOM

C
SUMVOFN=SUMVOFN+

| (DDD*(DDW*PHIVL(IM1,JP1)+
| DDE*PHIVL(IP1,JP1))+
| DDU*(DDW*PHIVU(IM1,JP1)+
| DDE*PHIVU(IP1,JP1))+
| PTWO*(DDD*PHIVL(I,JP1)+
| DDU*PHIVU(I,JP1)+
| DDW*PHIV(IM1,JP1)+
| DDE*PHIV(IP1,JP1))+
| PFOUR*PHIV(I,JP1))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDS+DDN)

C
SUMVOFD=SUMVOFD+

| (DDS*(DDW*PHIVL(IM1,JM1)+
| DDE*PHIVL(IP1,JM1))+
| DDN*(DDW*PHIVL(IM1,JP1)+
| DDE*PHIVL(IP1,JP1))+
| PTWO*(DDS*PHIVL(I,JM1)+
| DDN*PHIVL(I,JP1)+
| DDW*PHIVL(IM1,J)+
| DDE*PHIVL(IP1,J))+
| PFOUR*PHIVL(I,J))/DENOM

C
SUMVOFU=SUMVOFU+

| (DDS*(DDW*PHIVU(IM1,JM1)+
| DDE*PHIVU(IP1,JM1))+
| DDN*(DDW*PHIVU(IM1,JP1)+
| DDE*PHIVU(IP1,JP1))+
| PTWO*(DDS*PHIVU(I,JM1)+
| DDN*PHIVU(I,JP1)+
| DDW*PHIVU(IM1,J)+
| DDE*PHIVU(IP1,J))+
| PFOUR*PHIVU(I,J))/DENOM

C
ELSE

C
SUMVOF=SUMVOF+PHIM(I,J,MAT)

C
DENOM=(PTWO+DDS+DDN)*(PTWO+DDU+DDD)

C
SUMVOFW=SUMVOFW+

| (DDD*(DDS*PHIML(IM1,JM1,MAT)+
| DDN*PHIML(IM1,JP1,MAT))+
| DDU*(DDS*PHIMU(IM1,JM1,MAT)+
| DDN*PHIMU(IM1,JP1,MAT))+
| PTWO*(DDD*PHIML(IM1,J,MAT)+
| DDU*PHIMU(IM1,J,MAT)+
| DDS*PHIM(IM1,JM1,MAT)+
| DDN*PHIM(IM1,JP1,MAT))+
| PFOUR*PHIM(IM1,J,MAT))/DENOM

C
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SUMVOFE=SUMVOFE+
| (DDD*(DDS*PHIML(IP1,JM1,MAT)+
| DDN*PHIML(IP1,JP1,MAT))+
| DDU*(DDS*PHIMU(IP1,JM1,MAT)+
| DDN*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDD*PHIML(IP1,J,MAT)+
| DDU*PHIMU(IP1,J,MAT)+
| DDS*PHIM(IP1,JM1,MAT)+
| DDN*PHIM(IP1,JP1,MAT))+
| PFOUR*PHIM(IP1,J,MAT))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDU+DDD)

C
SUMVOFS=SUMVOFS+

| (DDD*(DDW*PHIML(IM1,JM1,MAT)+
| DDE*PHIML(IP1,JM1,MAT))+
| DDU*(DDW*PHIMU(IM1,JM1,MAT)+
| DDE*PHIMU(IP1,JM1,MAT))+
| PTWO*(DDD*PHIML(I,JM1,MAT)+
| DDU*PHIMU(I,JM1,MAT)+
| DDW*PHIM(IM1,JM1,MAT)+
| DDE*PHIM(IP1,JM1,MAT))+
| PFOUR*PHIM(I,JM1,MAT))/DENOM

C
SUMVOFN=SUMVOFN+

| (DDD*(DDW*PHIML(IM1,JP1,MAT)+
| DDE*PHIML(IP1,JP1,MAT))+
| DDU*(DDW*PHIMU(IM1,JP1,MAT)+
| DDE*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDD*PHIML(I,JP1,MAT)+
| DDU*PHIMU(I,JP1,MAT)+
| DDW*PHIM(IM1,JP1,MAT)+
| DDE*PHIM(IP1,JP1,MAT))+
| PFOUR*PHIM(I,JP1,MAT))/DENOM

C
DENOM=(PTWO+DDW+DDE)*(PTWO+DDS+DDN)

C
SUMVOFD=SUMVOFD+

| (DDS*(DDW*PHIML(IM1,JM1,MAT)+
| DDE*PHIML(IP1,JM1,MAT))+
| DDN*(DDW*PHIML(IM1,JP1,MAT)+
| DDE*PHIML(IP1,JP1,MAT))+
| PTWO*(DDS*PHIML(I,JM1,MAT)+
| DDN*PHIML(I,JP1,MAT)+
| DDW*PHIML(IM1,J,MAT)+
| DDE*PHIML(IP1,J,MAT))+
| PFOUR*PHIML(I,J,MAT))/DENOM

C
SUMVOFU=SUMVOFU+

| (DDS*(DDW*PHIMU(IM1,JM1,MAT)+
| DDE*PHIMU(IP1,JM1,MAT))+
| DDN*(DDW*PHIMU(IM1,JP1,MAT)+
| DDE*PHIMU(IP1,JP1,MAT))+
| PTWO*(DDS*PHIMU(I,JM1,MAT)+
| DDN*PHIMU(I,JP1,MAT)+
| DDW*PHIMU(IM1,J,MAT)+
| DDE*PHIMU(IP1,J,MAT))+
| PFOUR*PHIMU(I,J,MAT))/DENOM

C
ENDIF

C
VOLSUM(I,IORD)=SUMVOF
VOFW(IORD)=SUMVOFW
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VOFE(IORD)=SUMVOFE
VOFS(IORD)=SUMVOFS
VOFN(IORD)=SUMVOFN
VOFD(IORD)=SUMVOFD
VOFU(IORD)=SUMVOFU

C
110 CONTINUE

C
DENOM=VOLSUM(I,1)
VOLSUM(I,1)=PONE
DO 120 IORD=2,NMAT

VOLSUM(I,IORD)=VOLSUM(I,IORD)/DENOM
120 CONTINUE

C
C Compute the components of the normal for the unit cube.
C

DO 130 IORD=2,NMAT
GRADX=VOFW(IORD)-VOFE(IORD)
GRADY=VOFS(IORD)-VOFN(IORD)
GRADZ=VOFD(IORD)-VOFU(IORD)
GRADM=SQRT(GRADX**2+GRADY**2+GRADZ**2)
I2=IORD-1

C
IF(GRADM.EQ.PZERO)THEN

C
C The remaining materials in this cell are either
C isolated, or possibly form an interface parallel
C to a coordinate direction.
C

IG=0
IF(VOFE(IORD).EQ.PZERO)IG=100
IF(VOFN(IORD).EQ.PZERO)IG=IG+10
IF(VOFU(IORD).EQ.PZERO)IG=IG+1
IF(IG.GE.100)THEN

IF(IG.EQ.111)THEN
C
C Remaining materials are isolated; assign normal to
C a random direction.
C

GRADM=SQRT(RANDX**2+RANDY**2+RANDZ**2)
GNRM(I,1,I2)=RANDX/GRADM
GNRM(I,2,I2)=RANDY/GRADM
GNRM(I,3,I2)=RANDZ/GRADM

C
ELSEIF(IG.EQ.110)THEN

C
C Assign normal to x-y direction
C

GNRM(I,1,I2)=SQRT(PHALF)
GNRM(I,2,I2)=SQRT(PHALF)
GNRM(I,3,I2)=PZERO

ELSEIF(IG.EQ.101)THEN
C
C Assign normal to x-z direction
C

GNRM(I,1,I2)=SQRT(PHALF)
GNRM(I,2,I2)=PZERO
GNRM(I,3,I2)=SQRT(PHALF)

C
ELSE

C
C Assign normal to x direction
C
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GNRM(I,1,I2)=PONE
GNRM(I,2,I2)=PZERO
GNRM(I,3,I2)=PZERO

ENDIF
ELSEIF(IG.GE.10)THEN

IF(IG.EQ.11)THEN
C
C Assign normal to Y-z direction
C

GNRM(I,1,I2)=PZERO
GNRM(I,2,I2)=SQRT(PHALF)
GNRM(I,3,I2)=SQRT(PHALF)

C
ELSE

C
C Assign normal to the y direction
C

GNRM(I,1,I2)=PZERO
GNRM(I,2,I2)=PONE
GNRM(I,3,I2)=PZERO

ENDIF
ELSE

C
C Assign normal to the Z direction
C

GNRM(I,1,I2)=PZERO
GNRM(I,2,I2)=PZERO
GNRM(I,3,I2)=PONE

ENDIF
ELSE

GNRM(I,1,I2)=GRADX/GRADM
GNRM(I,2,I2)=GRADY/GRADM
GNRM(I,3,I2)=GRADZ/GRADM

ENDIF
130 CONTINUE

C
100 CONTINUE

C
RETURN
END
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Routine PARTVOF.F 
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          SUBROUTINE PARTVOF(JJ, ISTRT, IEND, IOFFS,
C input

| IMP, NMP, MATORD,
| GNRM, VOLSUM,

C output
| PHIVM, PHIVP, PHIMM, PHIMP,

C scratch (dimensioned 8*(NUMMAT+1))
| VOLSUMS,

C scratch (dimensioned 8)
| PDISS, PDISRS, VOLS, IPOS)

C
C
C*************************************************
C
C This subroutine uses Youngs interface tracking
C algorithm to determine the distance from a corner
C of the unit cube to the interface plane. Using this
C distance, the volume fractions are properly
C partitioned in the refined cells.
C
C*************************************************
C
#include "impdoubl.h"
#include "dbcxyz.h"
#include "comint.h"
#include "iofils.h"
C

DIMENSION NMP(IMAX),IMP(IMAX,NUMMAT+1),MATORD(IMAX,NUMMAT+1),
| GNRM(IMAX,3,NUMMAT),VOLSUM(IMAX,NUMMAT+1)

C
DIMENSION PHIVM(IMAX,JMAX),PHIVP(IMAX,JMAX),

| PHIMM(IMAX,JMAX,NUMMAT+1),PHIMP(IMAX,JMAX,NUMMAT+1)
C

DIMENSION VOLSUMS(8,NUMMAT+1),PDISS(8),PDISRS(8),VOLS(8),
| IPOS(8)

C
PARAMETER(PZERO=0.D0,PONE=1.D0,PTWO=2.D0,PTHREE=3.D0,

| PFOUR=4.D0,PSIX=6.D0,PTWELVE=12.D0,PHALF=PONE/PTWO,
| PTHIRD=PONE/PTHREE,PSMALL=1.D-14,
| PPI=3.141592653589793D0,PTWOPI=PTWO*PPI,
| PT75=PTHREE/PFOUR,P1P5=1.5D0,PFOURPI=PFOUR*PPI)

C
C main loop
C

DO 100 II=ISTRT,IEND,2
I=II/2+IOFFS
NMAT=NMP(I)
IF(NMAT.EQ.0)GOTO100
DO 110 IORD=2,NMAT

I2=IORD-1
VOL=VOLSUM(I,IORD)
IVOL=1
IF(VOL.GT.PHALF)THEN

VOL=PONE-VOL
IVOL=-1

ENDIF
GSUM=ABS(GNRM(I,1,I2))+ABS(GNRM(I,2,I2))+ABS(GNRM(I,3,I2))
GMAG=SQRT(GNRM(I,1,I2)**2+GNRM(I,2,I2)**2+GNRM(I,3,I2)**2)
GMAX=PZERO
GMIN=PONE
DO 120 INRM=1,3

IF(ABS(GNRM(I,INRM,I2)).GT.ABS(GMAX))THEN
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GMAX=GNRM(I,INRM,I2)
INRM3=INRM

ENDIF
IF(ABS(GNRM(I,INRM,I2)).LT.ABS(GMIN))THEN

GMIN=GNRM(I,INRM,I2)
INRM1=INRM

ENDIF
120 CONTINUE

HNRM3=ABS(GMAX)/GMAG
HNRM1=ABS(GMIN)/GMAG
INRM2=6-INRM1-INRM3
HNRM2=GSUM/GMAG-HNRM1-HNRM3
GMAG=GSUM-HNRM3

C
C Check for 2D OR 3D
C

IF(HNRM1.EQ.PZERO)THEN
C
C 2D
C

TEST=PTWO*VOL*HNRM3
IF(HNRM2.GE.TEST)THEN

C
C Intersection is a quadrilateral A
C

PDIS=SQRT(TEST*HNRM2)
C

ELSE
C
C Intersection is a quadrilateral B
C

PDIS=VOL*HNRM3+PHALF*HNRM2
C

ENDIF
C

ELSE
C
C 3D
C

TEST=PSIX*HNRM1*HNRM2*HNRM3*VOL
TESTTRI=HNRM1**3
TESTQUAD=HNRM2**3-(HNRM2-HNRM1)**3
IF(TEST.LE.TESTTRI)THEN

C
C Intersection is a triangular section.
C

PDIS=TEST**3
C

ELSEIF(TEST.LE.TESTQUAD)THEN
C
C Intersection is a quadrilateral section A
C

PDIS=PHALF*HNRM1+SQRT(PTHIRD*TEST/HNRM1-
| HNRM1**2/PTWELVE)

C
ELSE

C
C Test for pentagon, hexagon or quadrilateral section B
C

TESTPNT1=HNRM3**3-(HNRM3-HNRM1)**3-(HNRM3-HNRM2)**3
TESTPNT2=(HNRM1+HNRM2)**3-HNRM2**3-HNRM1**3
IF(HNRM3.GE.GMAG)THEN

C
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IF(TEST.LT.TESTPNT1)THEN
C
C Intersection is a pentagon. This solution
C was copied from RLB routine vofidx.f
C

R=PTHREE*HNRM1*HNRM2*(PHALF*GMAG-HNRM3*VOL)
Q=PTWO*HNRM1*HNRM2
AR=R/(MAX(Q*SQRT(Q),PSMALL))
IF(ABS(AR).GT.PONE)THEN

ARG=SIGN(PONE,AR)
ELSE

ARG=AR
ENDIF
S=PTHIRD*(ACOS(ARG)-PTWOPI)
PDIS=GMAG+PTWO*SQRT(Q)*COS(S)

C
ELSE

C
C Intersection is a hexagon. This solution
C was copied from RLB routine vofidx.f
C

A=PT75*(HNRM1**2-HNRM2**2+HNRM3**2)
| -P1P5*(HNRM1*HNRM2+HNRM2*HNRM3+
| +HNRM3*HNRM1)

B=PTHREE*HNRM1*HNRM2*HNRM3*(VOL-PHALF)
R=PTWO*SQRT(MAX(-PTHIRD*A,PZERO))
AR=PTHREE*B/SIGN(MAX(ABS(A*R),PSMALL),A*R)
IF(ABS(AR).GT.PONE)THEN

ARG=SIGN(PONE,AR)
ELSE

ARG=AR
ENDIF
S=PTHIRD*(ACOS(ARG)+PFOURPI)
PDIS=PHALF*(HNRM1+HNRM2+HNRM3)+R*COS(S)

C
ENDIF

C
ELSE

C
IF(TEST.LT.TESTPNT2)THEN

C
C Intersection is a pentagon. This solution
C was copied from RLB routine vofidx.f
C

R=PTHREE*HNRM1*HNRM2*(PHALF*GMAG-HNRM3*VOL)
Q=PTWO*HNRM1*HNRM2
AR=R/(MAX(Q*SQRT(Q),PSMALL))
IF(ABS(AR).GT.PONE)THEN

ARG=SIGN(PONE,AR)
ELSE

ARG=AR
ENDIF
S=PTHIRD*(ACOS(ARG)-PTWOPI)
PDIS=GMAG+PTWO*SQRT(Q)*COS(S)

C
ELSE

C
C Intersection is a quadrilateral section B
C

PDIS=VOL*HNRM3+PHALF*GMAG
C

ENDIF
C
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ENDIF
ENDIF

ENDIF
C
C Reverse direction if necessary
C

IF(IVOL.LT.0)PDIS=GSUM-PDIS
C
C Compute corner distances for the subdivided unit
C cubes.
C

TWOPDIS=PTWO*PDIS
PDISS(1)=TWOPDIS
PDISS(2)=TWOPDIS-HNRM1
PDISS(3)=TWOPDIS-HNRM2
PDISS(4)=PDISS(3)-HNRM1
PDISS(5)=TWOPDIS-HNRM3
PDISS(6)=PDISS(5)-HNRM1
PDISS(7)=PDISS(5)-HNRM2
PDISS(8)=PDISS(7)-HNRM1

C
TWOPDIS=PTWO*(GSUM-PDIS)
PDISRS(8)=TWOPDIS
PDISRS(7)=TWOPDIS-HNRM1
PDISRS(6)=TWOPDIS-HNRM2
PDISRS(5)=PDISRS(6)-HNRM1
PDISRS(4)=TWOPDIS-HNRM3
PDISRS(3)=PDISRS(4)-HNRM1
PDISRS(2)=PDISRS(4)-HNRM2
PDISRS(1)=PDISRS(2)-HNRM1

C
DO 140 ISUB=1,8

IVOL=1
PD1=PDISS(ISUB)
PDR1=PDISRS(ISUB)

C
C Check for completely full or empty
C

IF(PD1.LE.PZERO)THEN
VOLS(ISUB)=FLOAT((-IVOL+1)/2)

ELSEIF(PDR1.LE.PZERO)THEN
VOLS(ISUB)=FLOAT((IVOL+1)/2)

ELSE
C
C Check if corner distance exceeds upper limit;
C reverse direction if necessary
C

IF(PD1.GT.GMAG)THEN
IF(PD1.GT.HNRM3)THEN

IVOL=-IVOL
PD1=PDR1

ENDIF
ENDIF

C
C Check for 2D or 3D
C

IF(HNRM1.EQ.PZERO)THEN
C
C 2D
C

IF(PD1.LT.HNRM2)THEN
C
C Intersection is a quadrilateral A
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C
VS=PHALF*PD1**2/HNRM2/HNRM3

C
ELSE

C
C Intersection is a quadrilateral B
C

VS=(PD1-PHALF*HNRM2)/HNRM3
C

ENDIF
C

ELSE
C
C 3D
C

TEST=PSIX*HNRM1*HNRM2*HNRM3
IF(PD1.LE.HNRM1)THEN

C
C Intersection is a triangle.
C

VS=PD1**3/TEST
ELSEIF(PD1.LE.HNRM2)THEN

C
C Intersection is a quadrilateral section A
C

VS=(PD1**3-(PD1-HNRM1)**3)/TEST
ELSE

IF(PD1.LE.GMAG)THEN
IF(PD1.LE.HNRM3)THEN

C
C Intersection is a pentagon.
C

VS=(PD1**3-(PD1-HNRM1)**3-
| (PD1-HNRM2)**3)/TEST

ELSE
C
C Intersection is a hexagon.
C

VS=(PD1**3-(PD1-HNRM1)**3-(PD1-HNRM2)**3
| -(PD1-HNRM3)**3)/TEST

ENDIF
ELSE

C
C Intersection must be a quadrilateral section B
C

VS=(PD1-PHALF*GMAG)/HNRM3
ENDIF

ENDIF
ENDIF
VOLS(ISUB)=FLOAT((1-IVOL)/2)+VS*IVOL

ENDIF
IPOS(ISUB)=ISUB

140 CONTINUE
C
C Assign volume fractions to the proper cells based
C on the orientation of the unit cube to the physical
C coordinates.
C
C Column 1 correction
C

IF(INRM1.NE.1)THEN
IF(INRM2.EQ.1)THEN
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ITMP=IPOS(3)
IPOS(3)=IPOS(2)
IPOS(2)=ITMP
ITMP=IPOS(7)
IPOS(7)=IPOS(6)
IPOS(6)=ITMP
INRM2=INRM1
INRM1=1

ELSE
ITMP=IPOS(2)
IPOS(2)=IPOS(5)
IPOS(5)=ITMP
ITMP=IPOS(4)
IPOS(4)=IPOS(7)
IPOS(7)=ITMP
INRM3=INRM1
INRM1=1

ENDIF
ENDIF

C
C Column 2 correction
C

IF(INRM2.NE.2)THEN
ITMP=IPOS(3)
IPOS(3)=IPOS(5)
IPOS(5)=ITMP
ITMP=IPOS(4)
IPOS(4)=IPOS(6)
IPOS(6)=ITMP
INRM3=INRM2
INRM2=2

ENDIF
C
150 CONTINUE

C
C Now correct for sign changes
C

IF(GNRM(I,1,I2).LT.PZERO)THEN
C
C Do x reversal
C

ITMP=IPOS(1)
IPOS(1)=IPOS(2)
IPOS(2)=ITMP
ITMP=IPOS(3)
IPOS(3)=IPOS(4)
IPOS(4)=ITMP
ITMP=IPOS(5)
IPOS(5)=IPOS(6)
IPOS(6)=ITMP
ITMP=IPOS(7)
IPOS(7)=IPOS(8)
IPOS(8)=ITMP

ENDIF
C

IF(GNRM(I,2,I2).LT.PZERO)THEN
C
C Do y reversal
C

ITMP=IPOS(1)
IPOS(1)=IPOS(3)
IPOS(3)=ITMP
ITMP=IPOS(2)
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IPOS(2)=IPOS(4)
IPOS(4)=ITMP
ITMP=IPOS(5)
IPOS(5)=IPOS(7)
IPOS(7)=ITMP
ITMP=IPOS(6)
IPOS(6)=IPOS(8)
IPOS(8)=ITMP

ENDIF
C

IF(GNRM(I,3,I2).LT.PZERO)THEN
C
C Do z reversal
C

ITMP=IPOS(1)
IPOS(1)=IPOS(5)
IPOS(5)=ITMP
ITMP=IPOS(2)
IPOS(2)=IPOS(6)
IPOS(6)=ITMP
ITMP=IPOS(3)
IPOS(3)=IPOS(7)
IPOS(7)=ITMP
ITMP=IPOS(4)
IPOS(4)=IPOS(8)
IPOS(8)=ITMP

ENDIF
C
C Now partition this summed volumes among
C the subdivided cells.
C

DO 160 ISUB=1,8
VOLSUMS(ISUB,IORD)=VOLS(IPOS(ISUB))

160 CONTINUE
C
110 CONTINUE

C
IM=MAX(II,1)
JM=MAX(JJ,1)
DO 170 ISUB=1,8

MMAT=MATORD(I,1)
MAT=IMP(I,MMAT)
VS=PONE-VOLSUMS(ISUB,2)
IF(VS.LT.PSMALL)VS=PZERO
IF(ABS(VS-PONE).LT.PSMALL)VS=PONE
IF(ISUB.LE.4)THEN

IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-1)/2+JM
IF(MAT.EQ.0)THEN

PHIVM(IS,JS)=VS
ELSE

PHIMM(IS,JS,MAT)=VS
ENDIF

ELSE
IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-5)/2+JM
IF(MAT.EQ.0)THEN

PHIVP(IS,JS)=VS
ELSE

PHIMP(IS,JS,MAT)=VS
ENDIF

ENDIF
DO 180 IORD=2,NMAT-1
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MMAT=MATORD(I,IORD)
MAT=IMP(I,MMAT)
VS=VOLSUMS(ISUB,IORD)-VOLSUMS(ISUB,IORD+1)
IF(VS.LT.PSMALL)VS=PZERO
IF(ABS(VS-PONE).LT.PSMALL)VS=PONE
IF(ISUB.LE.4)THEN

IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-1)/2+JM
IF(MAT.EQ.0)THEN

PHIVM(IS,JS)=VS
ELSE

PHIMM(IS,JS,MAT)=VS
ENDIF

ELSE
IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-5)/2+JM
IF(MAT.EQ.0)THEN

PHIVP(IS,JS)=VS
ELSE

PHIMP(IS,JS,MAT)=VS
ENDIF

ENDIF
180 CONTINUE

MMAT=MATORD(I,NMAT)
MAT=IMP(I,MMAT)
VS=VOLSUMS(ISUB,NMAT)
IF(VS.LT.PSMALL)VS=PZERO
IF(ABS(VS-PONE).LT.PSMALL)VS=PONE
IF(ISUB.LE.4)THEN

IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-1)/2+JM
IF(MAT.EQ.0)THEN

PHIVM(IS,JS)=VS
ELSE

PHIMM(IS,JS,MAT)=VS
ENDIF

ELSE
IS=(ISUB/2*2-ISUB+1)+IM
JS=(ISUB-5)/2+JM
IF(MAT.EQ.0)THEN

PHIVP(IS,JS)=VS
ELSE

PHIMP(IS,JS,MAT)=VS
ENDIF

ENDIF
170 CONTINUE

C
100 CONTINUE

C
C

RETURN
END

 
 
 
 

 


